Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in $\Q_{ 67 }$ to precision 5.
Roots:
| $r_{ 1 }$ |
$=$ |
$ 8 + 25\cdot 67 + 56\cdot 67^{2} + 45\cdot 67^{3} + 36\cdot 67^{4} +O\left(67^{ 5 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 19 + 6\cdot 67 + 28\cdot 67^{2} + 67^{3} + 25\cdot 67^{4} +O\left(67^{ 5 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 49 + 60\cdot 67 + 38\cdot 67^{2} + 65\cdot 67^{3} + 41\cdot 67^{4} +O\left(67^{ 5 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 60 + 41\cdot 67 + 10\cdot 67^{2} + 21\cdot 67^{3} + 30\cdot 67^{4} +O\left(67^{ 5 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 4 }$
| Cycle notation |
| $(1,4)$ |
| $(1,2)(3,4)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 4 }$
| Character value |
| $1$ | $1$ | $()$ | $2$ |
| $1$ | $2$ | $(1,4)(2,3)$ | $-2$ |
| $2$ | $2$ | $(1,2)(3,4)$ | $0$ |
| $2$ | $2$ | $(1,4)$ | $0$ |
| $2$ | $4$ | $(1,3,4,2)$ | $0$ |
The blue line marks the conjugacy class containing complex conjugation.