Properties

Label 2.2e3_7_37e2.4t3.2
Dimension 2
Group $D_{4}$
Conductor $ 2^{3} \cdot 7 \cdot 37^{2}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_{4}$
Conductor:$76664= 2^{3} \cdot 7 \cdot 37^{2} $
Artin number field: Splitting field of $f= x^{4} - x^{3} - 45 x^{2} + 55 x + 694 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{4}$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 79 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 2 + 55\cdot 79 + 28\cdot 79^{2} + 33\cdot 79^{3} + 33\cdot 79^{4} +O\left(79^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 11 + 65\cdot 79 + 17\cdot 79^{2} + 58\cdot 79^{3} + 39\cdot 79^{4} +O\left(79^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 31 + 63\cdot 79 + 67\cdot 79^{2} + 56\cdot 79^{3} + 28\cdot 79^{4} +O\left(79^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 36 + 53\cdot 79 + 43\cdot 79^{2} + 9\cdot 79^{3} + 56\cdot 79^{4} +O\left(79^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 4 }$

Cycle notation
$(1,2)$
$(1,3)(2,4)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 4 }$ Character values
$c1$
$1$ $1$ $()$ $2$
$1$ $2$ $(1,2)(3,4)$ $-2$
$2$ $2$ $(1,3)(2,4)$ $0$
$2$ $2$ $(1,2)$ $0$
$2$ $4$ $(1,4,2,3)$ $0$
The blue line marks the conjugacy class containing complex conjugation.