Properties

Label 2.2e3_7_37e2.4t3.1c1
Dimension 2
Group $D_{4}$
Conductor $ 2^{3} \cdot 7 \cdot 37^{2}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_{4}$
Conductor:$76664= 2^{3} \cdot 7 \cdot 37^{2} $
Artin number field: Splitting field of $f= x^{4} - 2 x^{3} + 19 x^{2} + 56 x - 622 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{4}$
Parity: Odd
Determinant: 1.2e3_7.2t1.2c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 79 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 12 + 47\cdot 79 + 62\cdot 79^{2} + 79^{3} + 50\cdot 79^{4} +O\left(79^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 14 + 63\cdot 79 + 22\cdot 79^{2} + 22\cdot 79^{3} + 53\cdot 79^{4} +O\left(79^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 59 + 53\cdot 79 + 47\cdot 79^{2} + 43\cdot 79^{3} + 26\cdot 79^{4} +O\left(79^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 75 + 72\cdot 79 + 24\cdot 79^{2} + 11\cdot 79^{3} + 28\cdot 79^{4} +O\left(79^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 4 }$

Cycle notation
$(1,2)(3,4)$
$(1,3)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 4 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,3)(2,4)$$-2$
$2$$2$$(1,2)(3,4)$$0$
$2$$2$$(2,4)$$0$
$2$$4$$(1,2,3,4)$$0$
The blue line marks the conjugacy class containing complex conjugation.