Properties

Label 2.2e3_7_37.4t3.1c1
Dimension 2
Group $D_{4}$
Conductor $ 2^{3} \cdot 7 \cdot 37 $
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_{4}$
Conductor:$2072= 2^{3} \cdot 7 \cdot 37 $
Artin number field: Splitting field of $f= x^{4} - 2 x^{3} + x^{2} - 74 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{4}$
Parity: Odd
Determinant: 1.2e3_7_37.2t1.2c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 137 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 37 + 130\cdot 137 + 7\cdot 137^{2} + 61\cdot 137^{3} + 85\cdot 137^{4} +O\left(137^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 67 + 54\cdot 137 + 9\cdot 137^{2} + 104\cdot 137^{3} + 107\cdot 137^{4} +O\left(137^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 71 + 82\cdot 137 + 127\cdot 137^{2} + 32\cdot 137^{3} + 29\cdot 137^{4} +O\left(137^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 101 + 6\cdot 137 + 129\cdot 137^{2} + 75\cdot 137^{3} + 51\cdot 137^{4} +O\left(137^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 4 }$

Cycle notation
$(1,2)(3,4)$
$(2,3)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 4 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,4)(2,3)$$-2$
$2$$2$$(1,2)(3,4)$$0$
$2$$2$$(1,4)$$0$
$2$$4$$(1,3,4,2)$$0$
The blue line marks the conjugacy class containing complex conjugation.