Properties

Label 2.2e3_7_31.6t3.2
Dimension 2
Group $D_{6}$
Conductor $ 2^{3} \cdot 7 \cdot 31 $
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_{6}$
Conductor:$1736= 2^{3} \cdot 7 \cdot 31 $
Artin number field: Splitting field of $f= x^{6} - x^{5} + 4 x^{4} + 14 x^{3} + 29 x^{2} + 7 x + 98 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{6}$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 19 }$ to precision 7.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 19 }$: $ x^{2} + 18 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 1 + 3\cdot 19 + 3\cdot 19^{2} + 13\cdot 19^{3} + 10\cdot 19^{4} + 8\cdot 19^{5} + 12\cdot 19^{6} +O\left(19^{ 7 }\right)$
$r_{ 2 }$ $=$ $ 10 a + 12 + \left(9 a + 1\right)\cdot 19 + \left(a + 12\right)\cdot 19^{2} + \left(7 a + 1\right)\cdot 19^{3} + \left(17 a + 13\right)\cdot 19^{4} + \left(6 a + 10\right)\cdot 19^{5} + \left(15 a + 6\right)\cdot 19^{6} +O\left(19^{ 7 }\right)$
$r_{ 3 }$ $=$ $ 13 a + \left(13 a + 5\right)\cdot 19 + \left(3 a + 6\right)\cdot 19^{2} + \left(4 a + 4\right)\cdot 19^{3} + \left(8 a + 15\right)\cdot 19^{4} + \left(2 a + 17\right)\cdot 19^{5} + 18\cdot 19^{6} +O\left(19^{ 7 }\right)$
$r_{ 4 }$ $=$ $ 6 a + 13 + \left(5 a + 5\right)\cdot 19 + \left(15 a + 15\right)\cdot 19^{2} + \left(14 a + 4\right)\cdot 19^{3} + 10 a\cdot 19^{4} + \left(16 a + 12\right)\cdot 19^{5} + \left(18 a + 16\right)\cdot 19^{6} +O\left(19^{ 7 }\right)$
$r_{ 5 }$ $=$ $ 10 + 2\cdot 19 + 16\cdot 19^{2} + 6\cdot 19^{3} + 13\cdot 19^{4} + 7\cdot 19^{5} + 6\cdot 19^{6} +O\left(19^{ 7 }\right)$
$r_{ 6 }$ $=$ $ 9 a + 3 + \left(9 a + 1\right)\cdot 19 + \left(17 a + 4\right)\cdot 19^{2} + \left(11 a + 7\right)\cdot 19^{3} + \left(a + 4\right)\cdot 19^{4} + 12 a\cdot 19^{5} + \left(3 a + 15\right)\cdot 19^{6} +O\left(19^{ 7 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(2,6)(3,4)$
$(1,2,4,5,3,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$
$1$ $1$ $()$ $2$
$1$ $2$ $(1,5)(2,3)(4,6)$ $-2$
$3$ $2$ $(2,6)(3,4)$ $0$
$3$ $2$ $(1,2)(3,5)(4,6)$ $0$
$2$ $3$ $(1,4,3)(2,5,6)$ $-1$
$2$ $6$ $(1,2,4,5,3,6)$ $1$
The blue line marks the conjugacy class containing complex conjugation.