Properties

Label 2.2e3_7_23e2.4t3.1c1
Dimension 2
Group $D_{4}$
Conductor $ 2^{3} \cdot 7 \cdot 23^{2}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_{4}$
Conductor:$29624= 2^{3} \cdot 7 \cdot 23^{2} $
Artin number field: Splitting field of $f= x^{4} - 2 x^{3} - 11 x^{2} - 34 x - 217 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{4}$
Parity: Odd
Determinant: 1.2e3_7.2t1.2c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 79 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 39 + 15\cdot 79 + 43\cdot 79^{2} + 25\cdot 79^{3} + 32\cdot 79^{4} +O\left(79^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 50 + 41\cdot 79 + 4\cdot 79^{2} + 8\cdot 79^{3} + 49\cdot 79^{4} +O\left(79^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 74 + 52\cdot 79 + 16\cdot 79^{2} + 79^{3} + 78\cdot 79^{4} +O\left(79^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 76 + 47\cdot 79 + 14\cdot 79^{2} + 44\cdot 79^{3} + 77\cdot 79^{4} +O\left(79^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 4 }$

Cycle notation
$(1,2)$
$(1,3)(2,4)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 4 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,2)(3,4)$$-2$
$2$$2$$(1,3)(2,4)$$0$
$2$$2$$(1,2)$$0$
$2$$4$$(1,4,2,3)$$0$
The blue line marks the conjugacy class containing complex conjugation.