Properties

Label 2.2e3_7_23.4t3.9
Dimension 2
Group $D_4$
Conductor $ 2^{3} \cdot 7 \cdot 23 $
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_4$
Conductor:$1288= 2^{3} \cdot 7 \cdot 23 $
Artin number field: Splitting field of $f= x^{8} - 38 x^{6} - 36 x^{5} + 183 x^{4} + 40 x^{3} - 158 x^{2} - 16 x + 32 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{4}$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 89 }$ to precision 6.
Roots:
$r_{ 1 }$ $=$ $ 2 + 52\cdot 89 + 16\cdot 89^{2} + 46\cdot 89^{3} + 50\cdot 89^{4} + 2\cdot 89^{5} +O\left(89^{ 6 }\right)$
$r_{ 2 }$ $=$ $ 11 + 81\cdot 89 + 25\cdot 89^{2} + 52\cdot 89^{3} + 25\cdot 89^{4} + 25\cdot 89^{5} +O\left(89^{ 6 }\right)$
$r_{ 3 }$ $=$ $ 14 + 31\cdot 89 + 13\cdot 89^{2} + 86\cdot 89^{3} + 88\cdot 89^{4} + 71\cdot 89^{5} +O\left(89^{ 6 }\right)$
$r_{ 4 }$ $=$ $ 36 + 25\cdot 89 + 74\cdot 89^{2} + 28\cdot 89^{3} + 74\cdot 89^{4} + 2\cdot 89^{5} +O\left(89^{ 6 }\right)$
$r_{ 5 }$ $=$ $ 62 + 13\cdot 89 + 33\cdot 89^{2} + 82\cdot 89^{3} + 12\cdot 89^{4} + 78\cdot 89^{5} +O\left(89^{ 6 }\right)$
$r_{ 6 }$ $=$ $ 68 + 89 + 70\cdot 89^{2} + 3\cdot 89^{3} + 17\cdot 89^{4} + 46\cdot 89^{5} +O\left(89^{ 6 }\right)$
$r_{ 7 }$ $=$ $ 78 + 86\cdot 89 + 53\cdot 89^{2} + 20\cdot 89^{3} + 40\cdot 89^{4} + 5\cdot 89^{5} +O\left(89^{ 6 }\right)$
$r_{ 8 }$ $=$ $ 85 + 63\cdot 89 + 68\cdot 89^{2} + 35\cdot 89^{3} + 46\cdot 89^{4} + 34\cdot 89^{5} +O\left(89^{ 6 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,4,5,7)(2,6,3,8)$
$(1,2)(3,5)(4,8)(6,7)$
$(1,3)(2,5)(4,6)(7,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$
$1$ $1$ $()$ $2$
$1$ $2$ $(1,5)(2,3)(4,7)(6,8)$ $-2$
$2$ $2$ $(1,2)(3,5)(4,8)(6,7)$ $0$
$2$ $2$ $(1,6)(2,4)(3,7)(5,8)$ $0$
$2$ $4$ $(1,4,5,7)(2,6,3,8)$ $0$
The blue line marks the conjugacy class containing complex conjugation.