Properties

Label 2.2e3_7_23.4t3.8
Dimension 2
Group $D_{4}$
Conductor $ 2^{3} \cdot 7 \cdot 23 $
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_{4}$
Conductor:$1288= 2^{3} \cdot 7 \cdot 23 $
Artin number field: Splitting field of $f= x^{4} - 17 x^{2} + 32 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{4}$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 89 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 22 + 22\cdot 89 + 85\cdot 89^{2} + 51\cdot 89^{3} + 79\cdot 89^{4} +O\left(89^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 44 + 16\cdot 89 + 57\cdot 89^{2} + 83\cdot 89^{3} + 64\cdot 89^{4} +O\left(89^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 45 + 72\cdot 89 + 31\cdot 89^{2} + 5\cdot 89^{3} + 24\cdot 89^{4} +O\left(89^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 67 + 66\cdot 89 + 3\cdot 89^{2} + 37\cdot 89^{3} + 9\cdot 89^{4} +O\left(89^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 4 }$

Cycle notation
$(1,2)(3,4)$
$(2,3)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 4 }$ Character values
$c1$
$1$ $1$ $()$ $2$
$1$ $2$ $(1,4)(2,3)$ $-2$
$2$ $2$ $(1,2)(3,4)$ $0$
$2$ $2$ $(1,4)$ $0$
$2$ $4$ $(1,3,4,2)$ $0$
The blue line marks the conjugacy class containing complex conjugation.