Basic invariants
| Dimension: | $2$ |
| Group: | $D_{4}$ |
| Conductor: | \(1288\)\(\medspace = 2^{3} \cdot 7 \cdot 23 \) |
| Frobenius-Schur indicator: | $1$ |
| Root number: | $1$ |
| Artin number field: | Galois closure of 4.0.10304.1 |
| Galois orbit size: | $1$ |
| Smallest permutation container: | $D_{4}$ |
| Parity: | even |
| Projective image: | $C_2^2$ |
| Projective field: | Galois closure of \(\Q(\sqrt{2}, \sqrt{161})\) |
Galois action
Roots of defining polynomial
The roots of $f$ are computed in $\Q_{ 17 }$ to precision 5.
Roots:
| $r_{ 1 }$ | $=$ |
\( 2 + 17 + 2\cdot 17^{2} + 17^{3} + 11\cdot 17^{4} +O(17^{5})\)
|
| $r_{ 2 }$ | $=$ |
\( 4 + 11\cdot 17 + 14\cdot 17^{2} + 8\cdot 17^{3} + 8\cdot 17^{4} +O(17^{5})\)
|
| $r_{ 3 }$ | $=$ |
\( 5 + 13\cdot 17 + 12\cdot 17^{2} + 7\cdot 17^{3} + 11\cdot 17^{4} +O(17^{5})\)
|
| $r_{ 4 }$ | $=$ |
\( 8 + 8\cdot 17 + 4\cdot 17^{2} + 16\cdot 17^{3} + 2\cdot 17^{4} +O(17^{5})\)
|
Generators of the action on the roots $r_1, \ldots, r_{ 4 }$
| Cycle notation |
Character values on conjugacy classes
| Size | Order | Action on $r_1, \ldots, r_{ 4 }$ | Character values |
| $c1$ | |||
| $1$ | $1$ | $()$ | $2$ |
| $1$ | $2$ | $(1,3)(2,4)$ | $-2$ |
| $2$ | $2$ | $(1,2)(3,4)$ | $0$ |
| $2$ | $2$ | $(1,3)$ | $0$ |
| $2$ | $4$ | $(1,4,3,2)$ | $0$ |