Properties

Label 2.2e3_7_23.4t3.4
Dimension 2
Group $D_{4}$
Conductor $ 2^{3} \cdot 7 \cdot 23 $
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_{4}$
Conductor:$1288= 2^{3} \cdot 7 \cdot 23 $
Artin number field: Splitting field of $f= x^{4} - 2 x^{3} - 7 x^{2} + 8 x + 8 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{4}$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 89 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 12 + 25\cdot 89 + 62\cdot 89^{2} + 65\cdot 89^{3} + 16\cdot 89^{4} +O\left(89^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 34 + 47\cdot 89 + 58\cdot 89^{2} + 28\cdot 89^{3} + 7\cdot 89^{4} +O\left(89^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 56 + 41\cdot 89 + 30\cdot 89^{2} + 60\cdot 89^{3} + 81\cdot 89^{4} +O\left(89^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 78 + 63\cdot 89 + 26\cdot 89^{2} + 23\cdot 89^{3} + 72\cdot 89^{4} +O\left(89^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 4 }$

Cycle notation
$(1,4)$
$(1,2)(3,4)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 4 }$ Character values
$c1$
$1$ $1$ $()$ $2$
$1$ $2$ $(1,4)(2,3)$ $-2$
$2$ $2$ $(1,2)(3,4)$ $0$
$2$ $2$ $(1,4)$ $0$
$2$ $4$ $(1,3,4,2)$ $0$
The blue line marks the conjugacy class containing complex conjugation.