Properties

Label 2.2e3_7_23.4t3.12
Dimension 2
Group $D_4$
Conductor $ 2^{3} \cdot 7 \cdot 23 $
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_4$
Conductor:$1288= 2^{3} \cdot 7 \cdot 23 $
Artin number field: Splitting field of $f= x^{8} + 18 x^{6} + 145 x^{4} - 712 x^{2} + 1024 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{4}$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 103 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 11 + 44\cdot 103 + 93\cdot 103^{2} + 93\cdot 103^{3} + 71\cdot 103^{4} +O\left(103^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 12 + 96\cdot 103 + 93\cdot 103^{2} + 49\cdot 103^{3} + 30\cdot 103^{4} +O\left(103^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 16 + 15\cdot 103 + 6\cdot 103^{2} + 82\cdot 103^{3} + 88\cdot 103^{4} +O\left(103^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 39 + 52\cdot 103 + 90\cdot 103^{2} + 19\cdot 103^{3} + 88\cdot 103^{4} +O\left(103^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 64 + 50\cdot 103 + 12\cdot 103^{2} + 83\cdot 103^{3} + 14\cdot 103^{4} +O\left(103^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 87 + 87\cdot 103 + 96\cdot 103^{2} + 20\cdot 103^{3} + 14\cdot 103^{4} +O\left(103^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 91 + 6\cdot 103 + 9\cdot 103^{2} + 53\cdot 103^{3} + 72\cdot 103^{4} +O\left(103^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 92 + 58\cdot 103 + 9\cdot 103^{2} + 9\cdot 103^{3} + 31\cdot 103^{4} +O\left(103^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,2,3,5)(4,8,7,6)$
$(1,4)(2,6)(3,7)(5,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$
$1$ $1$ $()$ $2$
$1$ $2$ $(1,3)(2,5)(4,7)(6,8)$ $-2$
$2$ $2$ $(1,4)(2,6)(3,7)(5,8)$ $0$
$2$ $2$ $(1,6)(2,7)(3,8)(4,5)$ $0$
$2$ $4$ $(1,2,3,5)(4,8,7,6)$ $0$
The blue line marks the conjugacy class containing complex conjugation.