Properties

Label 2.2e3_7_17.6t5.2c2
Dimension 2
Group $S_3\times C_3$
Conductor $ 2^{3} \cdot 7 \cdot 17 $
Root number not computed
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$S_3\times C_3$
Conductor:$952= 2^{3} \cdot 7 \cdot 17 $
Artin number field: Splitting field of $f= x^{9} + 7 x^{7} - 8 x^{6} + 14 x^{5} - 28 x^{4} + 19 x^{3} - 14 x^{2} + 8 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $S_3\times C_3$
Parity: Odd
Determinant: 1.2e3_7_17.6t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 19 }$ to precision 7.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 19 }$: $ x^{3} + 4 x + 17 $
Roots:
$r_{ 1 }$ $=$ $ 14 a^{2} + 1 + \left(15 a^{2} + 4\right)\cdot 19 + \left(7 a^{2} + 13 a + 5\right)\cdot 19^{2} + \left(18 a^{2} + 13 a + 7\right)\cdot 19^{3} + \left(6 a^{2} + 12 a + 11\right)\cdot 19^{4} + \left(15 a^{2} + 7 a + 15\right)\cdot 19^{5} + \left(5 a^{2} + 12 a + 16\right)\cdot 19^{6} +O\left(19^{ 7 }\right)$
$r_{ 2 }$ $=$ $ 9 a^{2} + 18 a + 13 + \left(4 a^{2} + 3 a + 5\right)\cdot 19 + \left(18 a^{2} + 17 a + 1\right)\cdot 19^{2} + \left(13 a^{2} + 14 a + 8\right)\cdot 19^{3} + \left(4 a^{2} + 9 a + 5\right)\cdot 19^{4} + \left(12 a^{2} + a + 7\right)\cdot 19^{5} + \left(13 a^{2} + 9 a + 12\right)\cdot 19^{6} +O\left(19^{ 7 }\right)$
$r_{ 3 }$ $=$ $ 3 a^{2} + 6 a + 6 + \left(14 a^{2} + a + 13\right)\cdot 19 + \left(15 a^{2} + 6 a + 2\right)\cdot 19^{2} + \left(2 a^{2} + 9 a + 1\right)\cdot 19^{3} + \left(5 a^{2} + 13 a + 16\right)\cdot 19^{4} + \left(6 a^{2} + 18 a + 4\right)\cdot 19^{5} + \left(2 a^{2} + 10 a + 12\right)\cdot 19^{6} +O\left(19^{ 7 }\right)$
$r_{ 4 }$ $=$ $ 7 a^{2} + 14 a + 13 a\cdot 19 + \left(4 a^{2} + 14 a + 15\right)\cdot 19^{2} + \left(2 a^{2} + 13 a + 9\right)\cdot 19^{3} + \left(9 a^{2} + 14 a + 16\right)\cdot 19^{4} + \left(17 a + 6\right)\cdot 19^{5} + \left(3 a^{2} + 17 a + 13\right)\cdot 19^{6} +O\left(19^{ 7 }\right)$
$r_{ 5 }$ $=$ $ 18 a^{2} + 5 a + 4 + \left(7 a^{2} + 5 a + 1\right)\cdot 19 + \left(14 a^{2} + 15 a + 11\right)\cdot 19^{2} + \left(13 a^{2} + 10 a + 2\right)\cdot 19^{3} + \left(17 a^{2} + 10 a + 14\right)\cdot 19^{4} + \left(16 a^{2} + 15 a + 12\right)\cdot 19^{5} + \left(3 a^{2} + 13 a + 15\right)\cdot 19^{6} +O\left(19^{ 7 }\right)$
$r_{ 6 }$ $=$ $ 15 a^{2} + a + 10 + \left(17 a^{2} + 15 a + 9\right)\cdot 19 + \left(11 a^{2} + 7 a + 3\right)\cdot 19^{2} + \left(5 a^{2} + 9 a + 11\right)\cdot 19^{3} + \left(7 a^{2} + 15 a + 18\right)\cdot 19^{4} + \left(10 a^{2} + 9 a + 14\right)\cdot 19^{5} + \left(18 a^{2} + 16 a + 12\right)\cdot 19^{6} +O\left(19^{ 7 }\right)$
$r_{ 7 }$ $=$ $ 5 a^{2} + 13 a + 5 + \left(12 a^{2} + 17 a + 8\right)\cdot 19 + \left(11 a^{2} + 14 a + 4\right)\cdot 19^{2} + \left(18 a^{2} + 17 a + 5\right)\cdot 19^{3} + \left(12 a^{2} + 11 a + 5\right)\cdot 19^{4} + \left(10 a^{2} + 12 a + 10\right)\cdot 19^{5} + \left(15 a^{2} + 7 a + 9\right)\cdot 19^{6} +O\left(19^{ 7 }\right)$
$r_{ 8 }$ $=$ $ 11 a^{2} + 2 + 11 a^{2}19 + \left(10 a^{2} + 17 a + 8\right)\cdot 19^{2} + \left(16 a^{2} + 10 a + 12\right)\cdot 19^{3} + \left(12 a + 4\right)\cdot 19^{4} + \left(2 a^{2} + 6 a + 6\right)\cdot 19^{5} + \left(a^{2} + 15\right)\cdot 19^{6} +O\left(19^{ 7 }\right)$
$r_{ 9 }$ $=$ $ 13 a^{2} + 16 + \left(10 a^{2} + 14\right)\cdot 19 + \left(8 a + 5\right)\cdot 19^{2} + \left(3 a^{2} + 13 a + 18\right)\cdot 19^{3} + \left(11 a^{2} + 12 a + 2\right)\cdot 19^{4} + \left(a^{2} + 4 a + 16\right)\cdot 19^{5} + \left(12 a^{2} + 6 a + 5\right)\cdot 19^{6} +O\left(19^{ 7 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 9 }$

Cycle notation
$(1,9)(3,4)(6,7)$
$(2,3)(5,6)(8,9)$
$(1,2,7,8,4,5)(3,6,9)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 9 }$ Character value
$1$$1$$()$$2$
$3$$2$$(1,9)(3,4)(6,7)$$0$
$1$$3$$(1,7,4)(2,8,5)(3,9,6)$$-2 \zeta_{3} - 2$
$1$$3$$(1,4,7)(2,5,8)(3,6,9)$$2 \zeta_{3}$
$2$$3$$(1,8,9)(2,3,4)(5,6,7)$$-1$
$2$$3$$(1,3,5)(2,7,9)(4,6,8)$$-\zeta_{3}$
$2$$3$$(1,5,3)(2,9,7)(4,8,6)$$\zeta_{3} + 1$
$3$$6$$(1,2,7,8,4,5)(3,6,9)$$0$
$3$$6$$(1,5,4,8,7,2)(3,9,6)$$0$
The blue line marks the conjugacy class containing complex conjugation.