Properties

Label 2.2e3_7_151.4t3.9
Dimension 2
Group $D_4$
Conductor $ 2^{3} \cdot 7 \cdot 151 $
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_4$
Conductor:$8456= 2^{3} \cdot 7 \cdot 151 $
Artin number field: Splitting field of $f= x^{8} + 90 x^{6} - 92 x^{5} + 1015 x^{4} + 88 x^{3} - 1054 x^{2} - 48 x + 288 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{4}$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 41 }$ to precision 7.
Roots:
$r_{ 1 }$ $=$ $ 10 + 10\cdot 41 + 34\cdot 41^{2} + 4\cdot 41^{3} + 18\cdot 41^{4} + 33\cdot 41^{5} + 3\cdot 41^{6} +O\left(41^{ 7 }\right)$
$r_{ 2 }$ $=$ $ 14 + 29\cdot 41 + 35\cdot 41^{2} + 36\cdot 41^{3} + 31\cdot 41^{4} + 37\cdot 41^{5} + 39\cdot 41^{6} +O\left(41^{ 7 }\right)$
$r_{ 3 }$ $=$ $ 19 + 17\cdot 41 + 31\cdot 41^{2} + 36\cdot 41^{3} + 23\cdot 41^{4} + 28\cdot 41^{5} + 10\cdot 41^{6} +O\left(41^{ 7 }\right)$
$r_{ 4 }$ $=$ $ 20 + 32\cdot 41 + 30\cdot 41^{2} + 20\cdot 41^{3} + 31\cdot 41^{5} + 38\cdot 41^{6} +O\left(41^{ 7 }\right)$
$r_{ 5 }$ $=$ $ 28 + 35\cdot 41 + 8\cdot 41^{2} + 18\cdot 41^{3} + 25\cdot 41^{5} + 4\cdot 41^{6} +O\left(41^{ 7 }\right)$
$r_{ 6 }$ $=$ $ 37 + 3\cdot 41 + 20\cdot 41^{2} + 23\cdot 41^{3} + 8\cdot 41^{4} + 5\cdot 41^{5} + 39\cdot 41^{6} +O\left(41^{ 7 }\right)$
$r_{ 7 }$ $=$ $ 38 + 9\cdot 41 + 22\cdot 41^{2} + 19\cdot 41^{3} + 31\cdot 41^{4} + 20\cdot 41^{5} + 40\cdot 41^{6} +O\left(41^{ 7 }\right)$
$r_{ 8 }$ $=$ $ 39 + 24\cdot 41 + 21\cdot 41^{2} + 3\cdot 41^{3} + 8\cdot 41^{4} + 23\cdot 41^{5} + 27\cdot 41^{6} +O\left(41^{ 7 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,3)(2,8)(4,6)(5,7)$
$(1,2)(3,8)(4,7)(5,6)$
$(1,4,2,7)(3,5,8,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$
$1$ $1$ $()$ $2$
$1$ $2$ $(1,2)(3,8)(4,7)(5,6)$ $-2$
$2$ $2$ $(1,3)(2,8)(4,6)(5,7)$ $0$
$2$ $2$ $(1,5)(2,6)(3,4)(7,8)$ $0$
$2$ $4$ $(1,4,2,7)(3,5,8,6)$ $0$
The blue line marks the conjugacy class containing complex conjugation.