Properties

Label 2.2e3_7_11e2.4t3.3
Dimension 2
Group $D_4$
Conductor $ 2^{3} \cdot 7 \cdot 11^{2}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_4$
Conductor:$6776= 2^{3} \cdot 7 \cdot 11^{2} $
Artin number field: Splitting field of $f= x^{8} - 2 x^{7} + x^{6} + 16 x^{5} - 11 x^{4} - 82 x^{3} - 13 x^{2} + 348 x + 526 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{4}$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 193 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 13 + 38\cdot 193 + 52\cdot 193^{2} + 128\cdot 193^{3} + 60\cdot 193^{4} +O\left(193^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 16 + 13\cdot 193 + 90\cdot 193^{2} + 19\cdot 193^{3} + 56\cdot 193^{4} +O\left(193^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 25 + 87\cdot 193 + 162\cdot 193^{2} + 34\cdot 193^{3} + 26\cdot 193^{4} +O\left(193^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 58 + 189\cdot 193 + 20\cdot 193^{2} + 106\cdot 193^{3} + 133\cdot 193^{4} +O\left(193^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 95 + 96\cdot 193 + 112\cdot 193^{2} + 32\cdot 193^{3} + 170\cdot 193^{4} +O\left(193^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 107 + 145\cdot 193 + 29\cdot 193^{2} + 132\cdot 193^{3} + 135\cdot 193^{4} +O\left(193^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 122 + 56\cdot 193 + 24\cdot 193^{2} + 89\cdot 193^{3} + 54\cdot 193^{4} +O\left(193^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 145 + 145\cdot 193 + 86\cdot 193^{2} + 36\cdot 193^{3} + 135\cdot 193^{4} +O\left(193^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,2)(3,8)(4,6)(5,7)$
$(1,3)(2,4)(5,6)(7,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$
$1$ $1$ $()$ $2$
$1$ $2$ $(1,5)(2,7)(3,6)(4,8)$ $-2$
$2$ $2$ $(1,2)(3,8)(4,6)(5,7)$ $0$
$2$ $2$ $(1,3)(2,4)(5,6)(7,8)$ $0$
$2$ $4$ $(1,4,5,8)(2,3,7,6)$ $0$
The blue line marks the conjugacy class containing complex conjugation.