Properties

Label 2.2e3_73.8t6.2
Dimension 2
Group $D_{8}$
Conductor $ 2^{3} \cdot 73 $
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_{8}$
Conductor:$584= 2^{3} \cdot 73 $
Artin number field: Splitting field of $f= x^{8} - 8 x^{5} - x^{4} + 4 x^{3} + 8 x^{2} + 8 x + 4 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $D_{8}$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 227 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 22 + 184\cdot 227 + 117\cdot 227^{2} + 136\cdot 227^{3} + 72\cdot 227^{4} +O\left(227^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 68 + 86\cdot 227 + 42\cdot 227^{2} + 224\cdot 227^{3} + 136\cdot 227^{4} +O\left(227^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 77 + 15\cdot 227 + 206\cdot 227^{2} + 25\cdot 227^{3} + 113\cdot 227^{4} +O\left(227^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 86 + 47\cdot 227 + 5\cdot 227^{2} + 196\cdot 227^{3} + 107\cdot 227^{4} +O\left(227^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 131 + 193\cdot 227 + 98\cdot 227^{2} + 173\cdot 227^{3} + 70\cdot 227^{4} +O\left(227^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 145 + 219\cdot 227 + 143\cdot 227^{2} + 101\cdot 227^{3} + 202\cdot 227^{4} +O\left(227^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 163 + 211\cdot 227 + 154\cdot 227^{2} + 109\cdot 227^{3} + 111\cdot 227^{4} +O\left(227^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 216 + 176\cdot 227 + 138\cdot 227^{2} + 167\cdot 227^{3} + 92\cdot 227^{4} +O\left(227^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,3,6,5,8,2,4,7)$
$(1,8)(2,3)(4,6)(5,7)$
$(2,5)(3,7)(4,6)$
$(1,4,8,6)(2,5,3,7)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$ $c2$
$1$ $1$ $()$ $2$ $2$
$1$ $2$ $(1,8)(2,3)(4,6)(5,7)$ $-2$ $-2$
$4$ $2$ $(2,5)(3,7)(4,6)$ $0$ $0$
$4$ $2$ $(1,3)(2,8)(4,5)(6,7)$ $0$ $0$
$2$ $4$ $(1,6,8,4)(2,7,3,5)$ $0$ $0$
$2$ $8$ $(1,3,6,5,8,2,4,7)$ $-\zeta_{8}^{3} + \zeta_{8}$ $\zeta_{8}^{3} - \zeta_{8}$
$2$ $8$ $(1,5,4,3,8,7,6,2)$ $\zeta_{8}^{3} - \zeta_{8}$ $-\zeta_{8}^{3} + \zeta_{8}$
The blue line marks the conjugacy class containing complex conjugation.