Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in $\Q_{ 31 }$ to precision 6.
Roots:
| $r_{ 1 }$ |
$=$ |
$ 9 + 16\cdot 31 + 2\cdot 31^{2} + 12\cdot 31^{3} + 22\cdot 31^{4} + 4\cdot 31^{5} +O\left(31^{ 6 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 10 + 13\cdot 31 + 7\cdot 31^{2} + 3\cdot 31^{3} + 15\cdot 31^{4} + 25\cdot 31^{5} +O\left(31^{ 6 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 18 + 25\cdot 31 + 8\cdot 31^{2} + 23\cdot 31^{3} + 9\cdot 31^{4} + 26\cdot 31^{5} +O\left(31^{ 6 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 26 + 6\cdot 31 + 12\cdot 31^{2} + 23\cdot 31^{3} + 14\cdot 31^{4} + 5\cdot 31^{5} +O\left(31^{ 6 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 4 }$
| Cycle notation |
| $(1,3)(2,4)$ |
| $(3,4)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 4 }$
| Character value |
| $1$ | $1$ | $()$ | $2$ |
| $1$ | $2$ | $(1,2)(3,4)$ | $-2$ |
| $2$ | $2$ | $(1,3)(2,4)$ | $0$ |
| $2$ | $2$ | $(1,2)$ | $0$ |
| $2$ | $4$ | $(1,4,2,3)$ | $0$ |
The blue line marks the conjugacy class containing complex conjugation.