Properties

Label 2.2e3_5e2_7_17.4t3.1
Dimension 2
Group $D_{4}$
Conductor $ 2^{3} \cdot 5^{2} \cdot 7 \cdot 17 $
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_{4}$
Conductor:$23800= 2^{3} \cdot 5^{2} \cdot 7 \cdot 17 $
Artin number field: Splitting field of $f= x^{4} - x^{3} - x^{2} + 75 x + 270 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{4}$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 31 }$ to precision 6.
Roots:
$r_{ 1 }$ $=$ $ 9 + 16\cdot 31 + 2\cdot 31^{2} + 12\cdot 31^{3} + 22\cdot 31^{4} + 4\cdot 31^{5} +O\left(31^{ 6 }\right)$
$r_{ 2 }$ $=$ $ 10 + 13\cdot 31 + 7\cdot 31^{2} + 3\cdot 31^{3} + 15\cdot 31^{4} + 25\cdot 31^{5} +O\left(31^{ 6 }\right)$
$r_{ 3 }$ $=$ $ 18 + 25\cdot 31 + 8\cdot 31^{2} + 23\cdot 31^{3} + 9\cdot 31^{4} + 26\cdot 31^{5} +O\left(31^{ 6 }\right)$
$r_{ 4 }$ $=$ $ 26 + 6\cdot 31 + 12\cdot 31^{2} + 23\cdot 31^{3} + 14\cdot 31^{4} + 5\cdot 31^{5} +O\left(31^{ 6 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 4 }$

Cycle notation
$(1,3)(2,4)$
$(3,4)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 4 }$ Character values
$c1$
$1$ $1$ $()$ $2$
$1$ $2$ $(1,2)(3,4)$ $-2$
$2$ $2$ $(1,3)(2,4)$ $0$
$2$ $2$ $(1,2)$ $0$
$2$ $4$ $(1,4,2,3)$ $0$
The blue line marks the conjugacy class containing complex conjugation.