Properties

Label 2.2e3_5e2_47e2.6t3.1
Dimension 2
Group $D_{6}$
Conductor $ 2^{3} \cdot 5^{2} \cdot 47^{2}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_{6}$
Conductor:$441800= 2^{3} \cdot 5^{2} \cdot 47^{2} $
Artin number field: Splitting field of $f= x^{6} - 68 x^{4} - 120 x^{3} + 2613 x^{2} - 1560 x - 12286 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{6}$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 23 }$ to precision 9.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 23 }$: $ x^{2} + 21 x + 5 $
Roots:
$r_{ 1 }$ $=$ $ 8 a + 3 + \left(4 a + 21\right)\cdot 23 + \left(19 a + 8\right)\cdot 23^{2} + \left(15 a + 18\right)\cdot 23^{3} + \left(8 a + 3\right)\cdot 23^{4} + \left(15 a + 15\right)\cdot 23^{5} + \left(21 a + 15\right)\cdot 23^{6} + \left(a + 16\right)\cdot 23^{7} + \left(19 a + 5\right)\cdot 23^{8} +O\left(23^{ 9 }\right)$
$r_{ 2 }$ $=$ $ 15 a + 19 + \left(18 a + 21\right)\cdot 23 + \left(3 a + 19\right)\cdot 23^{2} + \left(7 a + 7\right)\cdot 23^{3} + \left(14 a + 5\right)\cdot 23^{4} + \left(7 a + 14\right)\cdot 23^{5} + \left(a + 20\right)\cdot 23^{6} + \left(21 a + 21\right)\cdot 23^{7} + \left(3 a + 18\right)\cdot 23^{8} +O\left(23^{ 9 }\right)$
$r_{ 3 }$ $=$ $ 11 + 7\cdot 23 + 13\cdot 23^{2} + 6\cdot 23^{3} + 2\cdot 23^{4} + 3\cdot 23^{5} + 14\cdot 23^{6} + 7\cdot 23^{7} + 17\cdot 23^{8} +O\left(23^{ 9 }\right)$
$r_{ 4 }$ $=$ $ 11 a + 9 + \left(12 a + 11\right)\cdot 23 + \left(a + 10\right)\cdot 23^{2} + \left(3 a + 7\right)\cdot 23^{3} + \left(2 a + 11\right)\cdot 23^{4} + \left(18 a + 12\right)\cdot 23^{5} + \left(9 a + 3\right)\cdot 23^{6} + 17 a\cdot 23^{7} + \left(19 a + 15\right)\cdot 23^{8} +O\left(23^{ 9 }\right)$
$r_{ 5 }$ $=$ $ 19 + 4\cdot 23 + 15\cdot 23^{2} + 16\cdot 23^{3} + 10\cdot 23^{4} + 10\cdot 23^{6} + 20\cdot 23^{7} + 20\cdot 23^{8} +O\left(23^{ 9 }\right)$
$r_{ 6 }$ $=$ $ 12 a + 8 + \left(10 a + 2\right)\cdot 23 + \left(21 a + 1\right)\cdot 23^{2} + \left(19 a + 12\right)\cdot 23^{3} + \left(20 a + 12\right)\cdot 23^{4} + 4 a\cdot 23^{5} + \left(13 a + 5\right)\cdot 23^{6} + \left(5 a + 2\right)\cdot 23^{7} + \left(3 a + 14\right)\cdot 23^{8} +O\left(23^{ 9 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(2,5)(3,4)$
$(1,2)(4,6)$
$(1,3,2,6,5,4)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$
$1$ $1$ $()$ $2$
$1$ $2$ $(1,6)(2,4)(3,5)$ $-2$
$3$ $2$ $(1,2)(4,6)$ $0$
$3$ $2$ $(1,6)(2,3)(4,5)$ $0$
$2$ $3$ $(1,2,5)(3,6,4)$ $-1$
$2$ $6$ $(1,3,2,6,5,4)$ $1$
The blue line marks the conjugacy class containing complex conjugation.