Properties

Label 2.2e3_5e2_11e2.6t3.2
Dimension 2
Group $D_{6}$
Conductor $ 2^{3} \cdot 5^{2} \cdot 11^{2}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_{6}$
Conductor:$24200= 2^{3} \cdot 5^{2} \cdot 11^{2} $
Artin number field: Splitting field of $f= x^{6} - x^{5} + 12 x^{4} - 13 x^{3} + 30 x^{2} + 25 x + 5 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{6}$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 23 }$ to precision 7.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 23 }$: $ x^{2} + 21 x + 5 $
Roots:
$r_{ 1 }$ $=$ $ 17 a + 19 + \left(20 a + 8\right)\cdot 23 + \left(12 a + 16\right)\cdot 23^{2} + \left(16 a + 11\right)\cdot 23^{3} + \left(17 a + 13\right)\cdot 23^{4} + \left(18 a + 15\right)\cdot 23^{5} + \left(16 a + 18\right)\cdot 23^{6} +O\left(23^{ 7 }\right)$
$r_{ 2 }$ $=$ $ 6 a + 16 + \left(2 a + 20\right)\cdot 23 + \left(10 a + 15\right)\cdot 23^{2} + \left(6 a + 7\right)\cdot 23^{3} + \left(5 a + 11\right)\cdot 23^{4} + \left(4 a + 9\right)\cdot 23^{5} + \left(6 a + 21\right)\cdot 23^{6} +O\left(23^{ 7 }\right)$
$r_{ 3 }$ $=$ $ 16 + 21\cdot 23 + 10\cdot 23^{2} + 14\cdot 23^{3} + 10\cdot 23^{4} + 19\cdot 23^{5} + 22\cdot 23^{6} +O\left(23^{ 7 }\right)$
$r_{ 4 }$ $=$ $ 17 a + 5 + \left(20 a + 19\right)\cdot 23 + \left(12 a + 10\right)\cdot 23^{2} + \left(16 a + 10\right)\cdot 23^{3} + \left(17 a + 15\right)\cdot 23^{4} + \left(18 a + 12\right)\cdot 23^{5} + \left(16 a + 6\right)\cdot 23^{6} +O\left(23^{ 7 }\right)$
$r_{ 5 }$ $=$ $ 6 a + 7 + \left(2 a + 10\right)\cdot 23 + \left(10 a + 21\right)\cdot 23^{2} + \left(6 a + 8\right)\cdot 23^{3} + \left(5 a + 9\right)\cdot 23^{4} + \left(4 a + 12\right)\cdot 23^{5} + \left(6 a + 10\right)\cdot 23^{6} +O\left(23^{ 7 }\right)$
$r_{ 6 }$ $=$ $ 7 + 11\cdot 23 + 16\cdot 23^{2} + 15\cdot 23^{3} + 8\cdot 23^{4} + 22\cdot 23^{5} + 11\cdot 23^{6} +O\left(23^{ 7 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,2,6,4,5,3)$
$(2,3)(5,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$
$1$ $1$ $()$ $2$
$1$ $2$ $(1,4)(2,5)(3,6)$ $-2$
$3$ $2$ $(2,3)(5,6)$ $0$
$3$ $2$ $(1,2)(3,6)(4,5)$ $0$
$2$ $3$ $(1,6,5)(2,4,3)$ $-1$
$2$ $6$ $(1,2,6,4,5,3)$ $1$
The blue line marks the conjugacy class containing complex conjugation.