Properties

Label 2.2e3_5_73.3t2.2
Dimension 2
Group $S_3$
Conductor $ 2^{3} \cdot 5 \cdot 73 $
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$S_3$
Conductor:$2920= 2^{3} \cdot 5 \cdot 73 $
Artin number field: Splitting field of $f= x^{3} - x^{2} - 15 x - 5 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_3$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 17 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 4 + 15\cdot 17 + 13\cdot 17^{2} + 5\cdot 17^{3} + 4\cdot 17^{4} +O\left(17^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 6 + 14\cdot 17 + 4\cdot 17^{2} + 14\cdot 17^{3} + 9\cdot 17^{4} +O\left(17^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 8 + 4\cdot 17 + 15\cdot 17^{2} + 13\cdot 17^{3} + 2\cdot 17^{4} +O\left(17^{ 5 }\right)$

Generators of the action on the roots $ r_{ 1 }, r_{ 2 }, r_{ 3 } $

Cycle notation
$(1,2,3)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $ r_{ 1 }, r_{ 2 }, r_{ 3 } $ Character values
$c1$
$1$ $1$ $()$ $2$
$3$ $2$ $(1,2)$ $0$
$2$ $3$ $(1,2,3)$ $-1$
The blue line marks the conjugacy class containing complex conjugation.