Properties

Label 2.2e3_5_359.4t3.4
Dimension 2
Group $D_{4}$
Conductor $ 2^{3} \cdot 5 \cdot 359 $
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_{4}$
Conductor:$14360= 2^{3} \cdot 5 \cdot 359 $
Artin number field: Splitting field of $f= x^{4} + 2 x^{2} + 360 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{4}$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 79 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 20 + 55\cdot 79 + 48\cdot 79^{2} + 75\cdot 79^{3} + 41\cdot 79^{4} +O\left(79^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 25 + 30\cdot 79 + 37\cdot 79^{2} + 44\cdot 79^{3} + 44\cdot 79^{4} +O\left(79^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 54 + 48\cdot 79 + 41\cdot 79^{2} + 34\cdot 79^{3} + 34\cdot 79^{4} +O\left(79^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 59 + 23\cdot 79 + 30\cdot 79^{2} + 3\cdot 79^{3} + 37\cdot 79^{4} +O\left(79^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 4 }$

Cycle notation
$(1,2)(3,4)$
$(2,3)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 4 }$ Character values
$c1$
$1$ $1$ $()$ $2$
$1$ $2$ $(1,4)(2,3)$ $-2$
$2$ $2$ $(1,2)(3,4)$ $0$
$2$ $2$ $(1,4)$ $0$
$2$ $4$ $(1,3,4,2)$ $0$
The blue line marks the conjugacy class containing complex conjugation.