Properties

Label 2.2e3_5_19e2.6t3.4c1
Dimension 2
Group $D_{6}$
Conductor $ 2^{3} \cdot 5 \cdot 19^{2}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_{6}$
Conductor:$14440= 2^{3} \cdot 5 \cdot 19^{2} $
Artin number field: Splitting field of $f= x^{6} - x^{5} - 16 x^{4} - 37 x^{3} + 66 x^{2} + 105 x + 521 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{6}$
Parity: Odd
Determinant: 1.2e3_5.2t1.2c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 29 }$ to precision 7.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 29 }$: $ x^{2} + 24 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 8 + 4\cdot 29 + 26\cdot 29^{2} + 2\cdot 29^{3} + 29^{4} + 18\cdot 29^{5} +O\left(29^{ 7 }\right)$
$r_{ 2 }$ $=$ $ 20 a + 25 + \left(14 a + 11\right)\cdot 29 + \left(24 a + 27\right)\cdot 29^{2} + \left(22 a + 12\right)\cdot 29^{3} + \left(17 a + 16\right)\cdot 29^{4} + \left(9 a + 2\right)\cdot 29^{5} + \left(19 a + 1\right)\cdot 29^{6} +O\left(29^{ 7 }\right)$
$r_{ 3 }$ $=$ $ 19 + 17\cdot 29 + 6\cdot 29^{2} + 29^{3} + 2\cdot 29^{4} + 21\cdot 29^{5} + 27\cdot 29^{6} +O\left(29^{ 7 }\right)$
$r_{ 4 }$ $=$ $ 9 a + 20 + \left(14 a + 20\right)\cdot 29 + \left(4 a + 28\right)\cdot 29^{2} + \left(6 a + 13\right)\cdot 29^{3} + \left(11 a + 25\right)\cdot 29^{4} + \left(19 a + 6\right)\cdot 29^{5} + \left(9 a + 28\right)\cdot 29^{6} +O\left(29^{ 7 }\right)$
$r_{ 5 }$ $=$ $ 9 a + 9 + \left(14 a + 7\right)\cdot 29 + \left(4 a + 19\right)\cdot 29^{2} + \left(6 a + 15\right)\cdot 29^{3} + \left(11 a + 24\right)\cdot 29^{4} + \left(19 a + 3\right)\cdot 29^{5} + \left(9 a + 1\right)\cdot 29^{6} +O\left(29^{ 7 }\right)$
$r_{ 6 }$ $=$ $ 20 a + 7 + \left(14 a + 25\right)\cdot 29 + \left(24 a + 7\right)\cdot 29^{2} + \left(22 a + 11\right)\cdot 29^{3} + \left(17 a + 17\right)\cdot 29^{4} + \left(9 a + 5\right)\cdot 29^{5} + \left(19 a + 28\right)\cdot 29^{6} +O\left(29^{ 7 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,2)(3,6)$
$(1,3)(2,6)(4,5)$
$(2,5)(4,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,3)(2,6)(4,5)$$-2$
$3$$2$$(1,2)(3,6)$$0$
$3$$2$$(1,6)(2,3)(4,5)$$0$
$2$$3$$(1,5,2)(3,4,6)$$-1$
$2$$6$$(1,4,2,3,5,6)$$1$
The blue line marks the conjugacy class containing complex conjugation.