Properties

Label 2.2e3_5_13_61.7t2.1c1
Dimension 2
Group $D_{7}$
Conductor $ 2^{3} \cdot 5 \cdot 13 \cdot 61 $
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_{7}$
Conductor:$31720= 2^{3} \cdot 5 \cdot 13 \cdot 61 $
Artin number field: Splitting field of $f= x^{7} - x^{6} - 8 x^{5} - 72 x^{4} + 351 x^{3} - 91 x^{2} - 3380 $ over $\Q$
Size of Galois orbit: 3
Smallest containing permutation representation: $D_{7}$
Parity: Odd
Determinant: 1.2e3_5_13_61.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 19 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 19 }$: $ x^{2} + 18 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 2 + 6\cdot 19 + 7\cdot 19^{2} + 15\cdot 19^{3} + 10\cdot 19^{4} +O\left(19^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 9 a + 5 + \left(7 a + 17\right)\cdot 19 + \left(13 a + 10\right)\cdot 19^{2} + \left(18 a + 1\right)\cdot 19^{3} + \left(9 a + 13\right)\cdot 19^{4} +O\left(19^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 17 a + 1 + \left(2 a + 4\right)\cdot 19 + \left(15 a + 4\right)\cdot 19^{2} + \left(6 a + 5\right)\cdot 19^{3} + \left(10 a + 13\right)\cdot 19^{4} +O\left(19^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 18 a + \left(15 a + 13\right)\cdot 19 + \left(16 a + 9\right)\cdot 19^{2} + \left(3 a + 12\right)\cdot 19^{3} + \left(5 a + 17\right)\cdot 19^{4} +O\left(19^{ 5 }\right)$
$r_{ 5 }$ $=$ $ a + 18 + \left(3 a + 10\right)\cdot 19 + \left(2 a + 10\right)\cdot 19^{2} + \left(15 a + 18\right)\cdot 19^{3} + \left(13 a + 18\right)\cdot 19^{4} +O\left(19^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 10 a + 14 + \left(11 a + 15\right)\cdot 19 + \left(5 a + 16\right)\cdot 19^{2} + 6\cdot 19^{3} + \left(9 a + 4\right)\cdot 19^{4} +O\left(19^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 2 a + 18 + \left(16 a + 8\right)\cdot 19 + \left(3 a + 16\right)\cdot 19^{2} + \left(12 a + 15\right)\cdot 19^{3} + \left(8 a + 16\right)\cdot 19^{4} +O\left(19^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 7 }$

Cycle notation
$(1,7)(2,4)(3,5)$
$(1,4)(2,5)(6,7)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 7 }$ Character value
$1$$1$$()$$2$
$7$$2$$(1,7)(2,4)(3,5)$$0$
$2$$7$$(1,6,7,4,5,3,2)$$-\zeta_{7}^{5} - \zeta_{7}^{4} - \zeta_{7}^{3} - \zeta_{7}^{2} - 1$
$2$$7$$(1,7,5,2,6,4,3)$$\zeta_{7}^{5} + \zeta_{7}^{2}$
$2$$7$$(1,4,2,7,3,6,5)$$\zeta_{7}^{4} + \zeta_{7}^{3}$
The blue line marks the conjugacy class containing complex conjugation.