Properties

Label 2.2e3_5_13.8t11.5c2
Dimension 2
Group $Q_8:C_2$
Conductor $ 2^{3} \cdot 5 \cdot 13 $
Root number not computed
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$Q_8:C_2$
Conductor:$520= 2^{3} \cdot 5 \cdot 13 $
Artin number field: Splitting field of $f= x^{8} - 2 x^{7} + x^{6} + 8 x^{5} - 7 x^{4} + 4 x^{3} + 11 x^{2} - 6 x + 9 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $Q_8:C_2$
Parity: Odd
Determinant: 1.2e3_5_13.2t1.2c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 179 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 7 + 100\cdot 179 + 61\cdot 179^{2} + 88\cdot 179^{3} + 91\cdot 179^{4} +O\left(179^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 11 + 91\cdot 179 + 73\cdot 179^{2} + 61\cdot 179^{3} + 158\cdot 179^{4} +O\left(179^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 14 + 79\cdot 179 + 48\cdot 179^{2} + 72\cdot 179^{3} + 23\cdot 179^{4} +O\left(179^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 40 + 123\cdot 179 + 176\cdot 179^{2} + 20\cdot 179^{3} + 72\cdot 179^{4} +O\left(179^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 92 + 58\cdot 179 + 169\cdot 179^{2} + 39\cdot 179^{3} + 92\cdot 179^{4} +O\left(179^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 101 + 139\cdot 179 + 88\cdot 179^{2} + 44\cdot 179^{3} + 16\cdot 179^{4} +O\left(179^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 135 + 149\cdot 179 + 53\cdot 179^{2} + 62\cdot 179^{3} + 7\cdot 179^{4} +O\left(179^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 139 + 153\cdot 179 + 43\cdot 179^{2} + 147\cdot 179^{3} + 75\cdot 179^{4} +O\left(179^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,6)(2,8)(3,4)(5,7)$
$(4,5)(6,8)$
$(1,4)(2,5)(3,8)(6,7)$
$(1,2)(3,7)(4,5)(6,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,2)(3,7)(4,5)(6,8)$$-2$
$2$$2$$(1,6)(2,8)(3,4)(5,7)$$0$
$2$$2$$(1,4)(2,5)(3,8)(6,7)$$0$
$2$$2$$(4,5)(6,8)$$0$
$1$$4$$(1,7,2,3)(4,6,5,8)$$2 \zeta_{4}$
$1$$4$$(1,3,2,7)(4,8,5,6)$$-2 \zeta_{4}$
$2$$4$$(1,8,2,6)(3,5,7,4)$$0$
$2$$4$$(1,7,2,3)(4,8,5,6)$$0$
$2$$4$$(1,5,2,4)(3,6,7,8)$$0$
The blue line marks the conjugacy class containing complex conjugation.