Properties

Label 2.2e3_5_13.8t11.3
Dimension 2
Group $Q_8:C_2$
Conductor $ 2^{3} \cdot 5 \cdot 13 $
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$Q_8:C_2$
Conductor:$520= 2^{3} \cdot 5 \cdot 13 $
Artin number field: Splitting field of $f= x^{8} - 3 x^{7} - 5 x^{6} + 15 x^{5} + 8 x^{4} - 15 x^{3} - 5 x^{2} + 4 x + 1 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $Q_8:C_2$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 191 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 17 + 63\cdot 191 + 8\cdot 191^{2} + 178\cdot 191^{3} + 36\cdot 191^{4} +O\left(191^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 31 + 91\cdot 191 + 72\cdot 191^{2} + 105\cdot 191^{3} + 104\cdot 191^{4} +O\left(191^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 51 + 150\cdot 191 + 166\cdot 191^{2} + 107\cdot 191^{3} + 52\cdot 191^{4} +O\left(191^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 74 + 76\cdot 191 + 122\cdot 191^{2} + 89\cdot 191^{3} + 66\cdot 191^{4} +O\left(191^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 96 + 15\cdot 191 + 182\cdot 191^{2} + 166\cdot 191^{3} + 163\cdot 191^{4} +O\left(191^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 138 + 190\cdot 191 + 93\cdot 191^{2} + 108\cdot 191^{3} + 150\cdot 191^{4} +O\left(191^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 178 + 136\cdot 191 + 87\cdot 191^{2} + 100\cdot 191^{3} + 172\cdot 191^{4} +O\left(191^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 182 + 39\cdot 191 + 30\cdot 191^{2} + 98\cdot 191^{3} + 16\cdot 191^{4} +O\left(191^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,2)(3,8)(4,5)(6,7)$
$(1,3)(2,8)(4,6)(5,7)$
$(1,3)(4,6)$
$(1,6,3,4)(2,5,8,7)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$ $c2$
$1$ $1$ $()$ $2$ $2$
$1$ $2$ $(1,3)(2,8)(4,6)(5,7)$ $-2$ $-2$
$2$ $2$ $(1,2)(3,8)(4,5)(6,7)$ $0$ $0$
$2$ $2$ $(1,7)(2,4)(3,5)(6,8)$ $0$ $0$
$2$ $2$ $(1,3)(4,6)$ $0$ $0$
$1$ $4$ $(1,4,3,6)(2,5,8,7)$ $-2 \zeta_{4}$ $2 \zeta_{4}$
$1$ $4$ $(1,6,3,4)(2,7,8,5)$ $2 \zeta_{4}$ $-2 \zeta_{4}$
$2$ $4$ $(1,6,3,4)(2,5,8,7)$ $0$ $0$
$2$ $4$ $(1,2,3,8)(4,5,6,7)$ $0$ $0$
$2$ $4$ $(1,5,3,7)(2,4,8,6)$ $0$ $0$
The blue line marks the conjugacy class containing complex conjugation.