Properties

Label 2.2e3_5_13.8t11.1
Dimension 2
Group $Q_8:C_2$
Conductor $ 2^{3} \cdot 5 \cdot 13 $
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$Q_8:C_2$
Conductor:$520= 2^{3} \cdot 5 \cdot 13 $
Artin number field: Splitting field of $f= x^{8} - 2 x^{7} - 7 x^{6} + 16 x^{5} + 4 x^{4} - 18 x^{3} + 2 x^{2} + 4 x - 1 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $Q_8:C_2$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 191 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 22 + 99\cdot 191 + 77\cdot 191^{2} + 125\cdot 191^{3} + 151\cdot 191^{4} +O\left(191^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 67 + 54\cdot 191 + 9\cdot 191^{2} + 173\cdot 191^{3} + 58\cdot 191^{4} +O\left(191^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 110 + 140\cdot 191 + 142\cdot 191^{2} + 168\cdot 191^{3} + 33\cdot 191^{4} +O\left(191^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 131 + 168\cdot 191 + 171\cdot 191^{2} + 143\cdot 191^{4} +O\left(191^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 144 + 36\cdot 191 + 110\cdot 191^{2} + 98\cdot 191^{3} + 49\cdot 191^{4} +O\left(191^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 149 + 175\cdot 191 + 105\cdot 191^{2} + 106\cdot 191^{3} + 67\cdot 191^{4} +O\left(191^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 150 + 185\cdot 191^{2} + 175\cdot 191^{3} + 121\cdot 191^{4} +O\left(191^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 184 + 87\cdot 191 + 152\cdot 191^{2} + 105\cdot 191^{3} + 137\cdot 191^{4} +O\left(191^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,5,2,7)(3,4,8,6)$
$(3,8)(4,6)$
$(1,2)(3,8)(4,6)(5,7)$
$(1,6)(2,4)(3,5)(7,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$ $c2$
$1$ $1$ $()$ $2$ $2$
$1$ $2$ $(1,2)(3,8)(4,6)(5,7)$ $-2$ $-2$
$2$ $2$ $(1,6)(2,4)(3,5)(7,8)$ $0$ $0$
$2$ $2$ $(3,8)(4,6)$ $0$ $0$
$2$ $2$ $(1,3)(2,8)(4,5)(6,7)$ $0$ $0$
$1$ $4$ $(1,5,2,7)(3,4,8,6)$ $-2 \zeta_{4}$ $2 \zeta_{4}$
$1$ $4$ $(1,7,2,5)(3,6,8,4)$ $2 \zeta_{4}$ $-2 \zeta_{4}$
$2$ $4$ $(1,3,2,8)(4,7,6,5)$ $0$ $0$
$2$ $4$ $(1,4,2,6)(3,5,8,7)$ $0$ $0$
$2$ $4$ $(1,5,2,7)(3,6,8,4)$ $0$ $0$
The blue line marks the conjugacy class containing complex conjugation.