Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in an extension of $\Q_{ 23 }$ to precision 6.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 23 }$: $ x^{2} + 21 x + 5 $
Roots:
| $r_{ 1 }$ |
$=$ |
$ 18 a + 22 + \left(22 a + 19\right)\cdot 23 + \left(19 a + 5\right)\cdot 23^{2} + \left(a + 20\right)\cdot 23^{3} + \left(12 a + 22\right)\cdot 23^{4} + \left(15 a + 2\right)\cdot 23^{5} +O\left(23^{ 6 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 7 a + 2 + 16 a\cdot 23 + \left(6 a + 15\right)\cdot 23^{2} + \left(20 a + 15\right)\cdot 23^{3} + \left(10 a + 4\right)\cdot 23^{4} + \left(12 a + 21\right)\cdot 23^{5} +O\left(23^{ 6 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 5 a + 12 + 23 + 3 a\cdot 23^{2} + \left(21 a + 4\right)\cdot 23^{3} + \left(10 a + 22\right)\cdot 23^{4} + \left(7 a + 21\right)\cdot 23^{5} +O\left(23^{ 6 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 16 a + 16 + \left(6 a + 2\right)\cdot 23 + \left(16 a + 12\right)\cdot 23^{2} + \left(2 a + 3\right)\cdot 23^{3} + \left(12 a + 6\right)\cdot 23^{4} + \left(10 a + 12\right)\cdot 23^{5} +O\left(23^{ 6 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 13 + 23 + 17\cdot 23^{2} + 21\cdot 23^{3} + 21\cdot 23^{5} +O\left(23^{ 6 }\right)$ |
| $r_{ 6 }$ |
$=$ |
$ 6 + 20\cdot 23 + 18\cdot 23^{2} + 3\cdot 23^{3} + 12\cdot 23^{4} + 12\cdot 23^{5} +O\left(23^{ 6 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 6 }$
| Cycle notation |
| $(1,2)(3,4)(5,6)$ |
| $(3,5)(4,6)$ |
| $(1,3,5)(2,4,6)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 6 }$
| Character value |
| $1$ | $1$ | $()$ | $2$ |
| $1$ | $2$ | $(1,2)(3,4)(5,6)$ | $-2$ |
| $3$ | $2$ | $(3,5)(4,6)$ | $0$ |
| $3$ | $2$ | $(1,2)(3,6)(4,5)$ | $0$ |
| $2$ | $3$ | $(1,3,5)(2,4,6)$ | $-1$ |
| $2$ | $6$ | $(1,4,5,2,3,6)$ | $1$ |
The blue line marks the conjugacy class containing complex conjugation.