Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in $\Q_{ 79 }$ to precision 5.
Roots:
| $r_{ 1 }$ |
$=$ |
$ 25 + 5\cdot 79 + 24\cdot 79^{2} + 67\cdot 79^{3} + 68\cdot 79^{4} +O\left(79^{ 5 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 32 + 66\cdot 79 + 75\cdot 79^{2} + 41\cdot 79^{3} + 64\cdot 79^{4} +O\left(79^{ 5 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 39 + 34\cdot 79 + 34\cdot 79^{2} + 3\cdot 79^{3} + 12\cdot 79^{4} +O\left(79^{ 5 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 64 + 51\cdot 79 + 23\cdot 79^{2} + 45\cdot 79^{3} + 12\cdot 79^{4} +O\left(79^{ 5 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 4 }$
| Cycle notation |
| $(1,4)$ |
| $(1,2)(3,4)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 4 }$
| Character values |
| | |
$c1$ |
| $1$ |
$1$ |
$()$ |
$2$ |
| $1$ |
$2$ |
$(1,4)(2,3)$ |
$-2$ |
| $2$ |
$2$ |
$(1,2)(3,4)$ |
$0$ |
| $2$ |
$2$ |
$(1,4)$ |
$0$ |
| $2$ |
$4$ |
$(1,3,4,2)$ |
$0$ |
The blue line marks the conjugacy class containing complex conjugation.