Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in $\Q_{ 83 }$ to precision 5.
Roots:
| $r_{ 1 }$ |
$=$ |
$ 12 + 72\cdot 83 + 48\cdot 83^{2} + 15\cdot 83^{3} + 31\cdot 83^{4} +O\left(83^{ 5 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 32 + 20\cdot 83 + 75\cdot 83^{2} + 23\cdot 83^{3} + 61\cdot 83^{4} +O\left(83^{ 5 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 40 + 73\cdot 83 + 41\cdot 83^{2} + 43\cdot 83^{3} + 73\cdot 83^{4} +O\left(83^{ 5 }\right)$ |
Generators of the action on the roots
$ r_{ 1 }, r_{ 2 }, r_{ 3 } $
| Cycle notation |
| $(1,2,3)$ |
| $(1,2)$ |
Character values on conjugacy classes
| Size | Order | Action on
$ r_{ 1 }, r_{ 2 }, r_{ 3 } $
| Character value |
| $1$ | $1$ | $()$ | $2$ |
| $3$ | $2$ | $(1,2)$ | $0$ |
| $2$ | $3$ | $(1,2,3)$ | $-1$ |
The blue line marks the conjugacy class containing complex conjugation.