Properties

Label 2.2e3_43.24t22.2c2
Dimension 2
Group $\textrm{GL(2,3)}$
Conductor $ 2^{3} \cdot 43 $
Root number not computed
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$\textrm{GL(2,3)}$
Conductor:$344= 2^{3} \cdot 43 $
Artin number field: Splitting field of $f= x^{8} - 4 x^{7} + 10 x^{6} - 14 x^{5} + 10 x^{4} + 2 x^{3} - 10 x^{2} + 8 x - 2 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: 24T22
Parity: Odd
Determinant: 1.43.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 19 }$ to precision 7.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 19 }$: $ x^{2} + 18 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 8 a + 15 + \left(14 a + 1\right)\cdot 19 + \left(7 a + 10\right)\cdot 19^{2} + \left(2 a + 8\right)\cdot 19^{3} + \left(9 a + 18\right)\cdot 19^{4} + \left(16 a + 9\right)\cdot 19^{5} + \left(6 a + 7\right)\cdot 19^{6} +O\left(19^{ 7 }\right)$
$r_{ 2 }$ $=$ $ 13 + 18\cdot 19 + 4\cdot 19^{2} + 6\cdot 19^{3} + 4\cdot 19^{4} + 14\cdot 19^{5} + 5\cdot 19^{6} +O\left(19^{ 7 }\right)$
$r_{ 3 }$ $=$ $ 15 a + 10 + \left(3 a + 10\right)\cdot 19 + \left(15 a + 12\right)\cdot 19^{2} + \left(8 a + 18\right)\cdot 19^{3} + \left(7 a + 2\right)\cdot 19^{4} + \left(11 a + 9\right)\cdot 19^{5} + \left(17 a + 11\right)\cdot 19^{6} +O\left(19^{ 7 }\right)$
$r_{ 4 }$ $=$ $ 11 a + 6 + \left(7 a + 8\right)\cdot 19 + \left(13 a + 7\right)\cdot 19^{2} + \left(2 a + 5\right)\cdot 19^{3} + \left(9 a + 13\right)\cdot 19^{4} + \left(12 a + 17\right)\cdot 19^{5} + \left(13 a + 12\right)\cdot 19^{6} +O\left(19^{ 7 }\right)$
$r_{ 5 }$ $=$ $ 9 + 5\cdot 19 + 8\cdot 19^{3} + 9\cdot 19^{4} + 11\cdot 19^{5} + 8\cdot 19^{6} +O\left(19^{ 7 }\right)$
$r_{ 6 }$ $=$ $ 11 a + 4 + \left(4 a + 8\right)\cdot 19 + \left(11 a + 3\right)\cdot 19^{2} + \left(16 a + 3\right)\cdot 19^{3} + \left(9 a + 6\right)\cdot 19^{4} + \left(2 a + 17\right)\cdot 19^{5} + \left(12 a + 16\right)\cdot 19^{6} +O\left(19^{ 7 }\right)$
$r_{ 7 }$ $=$ $ 8 a + 17 + \left(11 a + 4\right)\cdot 19 + \left(5 a + 13\right)\cdot 19^{2} + \left(16 a + 13\right)\cdot 19^{3} + 9 a\cdot 19^{4} + \left(6 a + 2\right)\cdot 19^{5} + \left(5 a + 14\right)\cdot 19^{6} +O\left(19^{ 7 }\right)$
$r_{ 8 }$ $=$ $ 4 a + 6 + \left(15 a + 18\right)\cdot 19 + \left(3 a + 4\right)\cdot 19^{2} + \left(10 a + 12\right)\cdot 19^{3} + \left(11 a + 1\right)\cdot 19^{4} + \left(7 a + 13\right)\cdot 19^{5} + \left(a + 17\right)\cdot 19^{6} +O\left(19^{ 7 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(2,8,6)(3,4,5)$
$(2,4)(3,8)(5,6)$
$(1,3,7,8)(2,6,5,4)$
$(1,5,7,2)(3,6,8,4)$
$(1,7)(2,5)(3,8)(4,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,7)(2,5)(3,8)(4,6)$$-2$
$12$$2$$(2,4)(3,8)(5,6)$$0$
$8$$3$$(1,4,8)(3,7,6)$$-1$
$6$$4$$(1,3,7,8)(2,6,5,4)$$0$
$8$$6$$(1,7)(2,3,6,5,8,4)$$1$
$6$$8$$(1,5,8,6,7,2,3,4)$$\zeta_{8}^{3} + \zeta_{8}$
$6$$8$$(1,2,8,4,7,5,3,6)$$-\zeta_{8}^{3} - \zeta_{8}$
The blue line marks the conjugacy class containing complex conjugation.