Properties

Label 2.2e3_41e2.4t3.5c1
Dimension 2
Group $D_4$
Conductor $ 2^{3} \cdot 41^{2}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_4$
Conductor:$13448= 2^{3} \cdot 41^{2} $
Artin number field: Splitting field of $f= x^{8} - 2 x^{7} - 37 x^{6} + 88 x^{5} + 249 x^{4} - 642 x^{3} - 247 x^{2} + 828 x + 18 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{4}$
Parity: Even
Determinant: 1.2e3.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 113 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 12 + 33\cdot 113 + 39\cdot 113^{2} + 8\cdot 113^{3} + 78\cdot 113^{4} +O\left(113^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 23 + 110\cdot 113 + 77\cdot 113^{2} + 68\cdot 113^{3} + 62\cdot 113^{4} +O\left(113^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 41 + 88\cdot 113 + 23\cdot 113^{2} + 94\cdot 113^{3} + 70\cdot 113^{4} +O\left(113^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 52 + 52\cdot 113 + 62\cdot 113^{2} + 41\cdot 113^{3} + 55\cdot 113^{4} +O\left(113^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 69 + 31\cdot 113 + 7\cdot 113^{2} + 96\cdot 113^{3} + 64\cdot 113^{4} +O\left(113^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 80 + 108\cdot 113 + 45\cdot 113^{2} + 43\cdot 113^{3} + 49\cdot 113^{4} +O\left(113^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 83 + 31\cdot 113 + 78\cdot 113^{2} + 19\cdot 113^{3} + 43\cdot 113^{4} +O\left(113^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 94 + 108\cdot 113 + 3\cdot 113^{2} + 80\cdot 113^{3} + 27\cdot 113^{4} +O\left(113^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,2)(3,8)(4,7)(5,6)$
$(1,3,5,7)(2,4,6,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,5)(2,6)(3,7)(4,8)$$-2$
$2$$2$$(1,2)(3,8)(4,7)(5,6)$$0$
$2$$2$$(1,4)(2,3)(5,8)(6,7)$$0$
$2$$4$$(1,3,5,7)(2,4,6,8)$$0$
The blue line marks the conjugacy class containing complex conjugation.