Properties

Label 2.2e3_41.4t3.5c1
Dimension 2
Group $D_4$
Conductor $ 2^{3} \cdot 41 $
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_4$
Conductor:$328= 2^{3} \cdot 41 $
Artin number field: Splitting field of $f= x^{8} - 4 x^{7} - 14 x^{6} + 56 x^{5} + 49 x^{4} - 196 x^{3} + 28 x^{2} + 80 x - 25 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{4}$
Parity: Even
Determinant: 1.2e3_41.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 73 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 8 + 38\cdot 73 + 14\cdot 73^{2} + 45\cdot 73^{3} + 52\cdot 73^{4} +O\left(73^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 12 + 2\cdot 73 + 7\cdot 73^{2} + 5\cdot 73^{3} + 25\cdot 73^{4} +O\left(73^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 22 + 31\cdot 73 + 26\cdot 73^{2} + 6\cdot 73^{3} + 33\cdot 73^{4} +O\left(73^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 34 + 49\cdot 73 + 52\cdot 73^{2} + 25\cdot 73^{3} + 54\cdot 73^{4} +O\left(73^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 40 + 23\cdot 73 + 20\cdot 73^{2} + 47\cdot 73^{3} + 18\cdot 73^{4} +O\left(73^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 52 + 41\cdot 73 + 46\cdot 73^{2} + 66\cdot 73^{3} + 39\cdot 73^{4} +O\left(73^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 62 + 70\cdot 73 + 65\cdot 73^{2} + 67\cdot 73^{3} + 47\cdot 73^{4} +O\left(73^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 66 + 34\cdot 73 + 58\cdot 73^{2} + 27\cdot 73^{3} + 20\cdot 73^{4} +O\left(73^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,3,8,6)(2,4,7,5)$
$(1,2)(3,5)(4,6)(7,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,8)(2,7)(3,6)(4,5)$$-2$
$2$$2$$(1,2)(3,5)(4,6)(7,8)$$0$
$2$$2$$(1,4)(2,3)(5,8)(6,7)$$0$
$2$$4$$(1,3,8,6)(2,4,7,5)$$0$
The blue line marks the conjugacy class containing complex conjugation.