Properties

Label 2.2e3_3e4_5e2.6t3.10
Dimension 2
Group $D_{6}$
Conductor $ 2^{3} \cdot 3^{4} \cdot 5^{2}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_{6}$
Conductor:$16200= 2^{3} \cdot 3^{4} \cdot 5^{2} $
Artin number field: Splitting field of $f= x^{6} - 3 x^{5} - 6 x^{4} - 3 x^{3} + 30 x^{2} - 39 x + 109 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{6}$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 29 }$ to precision 7.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 29 }$: $ x^{2} + 24 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 18 + 21\cdot 29 + 14\cdot 29^{2} + 14\cdot 29^{3} + 10\cdot 29^{4} + 3\cdot 29^{5} + 26\cdot 29^{6} +O\left(29^{ 7 }\right)$
$r_{ 2 }$ $=$ $ 7 + 8\cdot 29 + 5\cdot 29^{2} + 16\cdot 29^{3} + 9\cdot 29^{4} + 28\cdot 29^{6} +O\left(29^{ 7 }\right)$
$r_{ 3 }$ $=$ $ 21 a + 20 + \left(22 a + 3\right)\cdot 29 + \left(5 a + 11\right)\cdot 29^{2} + \left(7 a + 5\right)\cdot 29^{3} + \left(4 a + 10\right)\cdot 29^{4} + 24 a\cdot 29^{5} + \left(17 a + 11\right)\cdot 29^{6} +O\left(29^{ 7 }\right)$
$r_{ 4 }$ $=$ $ 21 a + 9 + \left(22 a + 19\right)\cdot 29 + \left(5 a + 1\right)\cdot 29^{2} + \left(7 a + 7\right)\cdot 29^{3} + \left(4 a + 9\right)\cdot 29^{4} + \left(24 a + 26\right)\cdot 29^{5} + \left(17 a + 12\right)\cdot 29^{6} +O\left(29^{ 7 }\right)$
$r_{ 5 }$ $=$ $ 8 a + 27 + \left(6 a + 24\right)\cdot 29 + \left(23 a + 7\right)\cdot 29^{2} + \left(21 a + 8\right)\cdot 29^{3} + \left(24 a + 23\right)\cdot 29^{4} + \left(4 a + 26\right)\cdot 29^{5} + \left(11 a + 19\right)\cdot 29^{6} +O\left(29^{ 7 }\right)$
$r_{ 6 }$ $=$ $ 8 a + 9 + \left(6 a + 9\right)\cdot 29 + \left(23 a + 17\right)\cdot 29^{2} + \left(21 a + 6\right)\cdot 29^{3} + \left(24 a + 24\right)\cdot 29^{4} + 4 a\cdot 29^{5} + \left(11 a + 18\right)\cdot 29^{6} +O\left(29^{ 7 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,2)(3,4)(5,6)$
$(3,6)(4,5)$
$(1,3)(2,4)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$
$1$ $1$ $()$ $2$
$1$ $2$ $(1,2)(3,4)(5,6)$ $-2$
$3$ $2$ $(1,3)(2,4)$ $0$
$3$ $2$ $(1,4)(2,3)(5,6)$ $0$
$2$ $3$ $(1,6,3)(2,5,4)$ $-1$
$2$ $6$ $(1,5,3,2,6,4)$ $1$
The blue line marks the conjugacy class containing complex conjugation.