Properties

Label 2.3240.6t5.c
Dimension $2$
Group $S_3\times C_3$
Conductor $3240$
Indicator $0$

Related objects

Downloads

Learn more

Basic invariants

Dimension:$2$
Group:$S_3\times C_3$
Conductor:\(3240\)\(\medspace = 2^{3} \cdot 3^{4} \cdot 5 \)
Artin number field: Galois closure of 6.0.1259712000.3
Galois orbit size: $2$
Smallest permutation container: $S_3\times C_3$
Parity: odd
Projective image: $S_3$
Projective field: Galois closure of 3.1.1080.1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 19 }$ to precision 6.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 19 }$: \( x^{2} + 18x + 2 \) Copy content Toggle raw display
Roots:
$r_{ 1 }$ $=$ \( 17 a + 11 + \left(12 a + 7\right)\cdot 19 + \left(13 a + 9\right)\cdot 19^{2} + \left(3 a + 4\right)\cdot 19^{3} + \left(11 a + 16\right)\cdot 19^{4} + 16\cdot 19^{5} +O(19^{6})\) Copy content Toggle raw display
$r_{ 2 }$ $=$ \( 13 a + 1 + \left(8 a + 2\right)\cdot 19 + \left(18 a + 9\right)\cdot 19^{2} + \left(6 a + 13\right)\cdot 19^{3} + \left(13 a + 10\right)\cdot 19^{4} + \left(16 a + 17\right)\cdot 19^{5} +O(19^{6})\) Copy content Toggle raw display
$r_{ 3 }$ $=$ \( 15 a + 13 + \left(14 a + 13\right)\cdot 19 + \left(4 a + 9\right)\cdot 19^{2} + \left(3 a + 12\right)\cdot 19^{3} + \left(2 a + 4\right)\cdot 19^{4} + 16 a\cdot 19^{5} +O(19^{6})\) Copy content Toggle raw display
$r_{ 4 }$ $=$ \( 2 a + 9 + \left(6 a + 3\right)\cdot 19 + \left(5 a + 10\right)\cdot 19^{2} + \left(15 a + 13\right)\cdot 19^{3} + \left(7 a + 4\right)\cdot 19^{4} + \left(18 a + 6\right)\cdot 19^{5} +O(19^{6})\) Copy content Toggle raw display
$r_{ 5 }$ $=$ \( 6 a + 14 + \left(10 a + 16\right)\cdot 19 + 18\cdot 19^{2} + \left(12 a + 1\right)\cdot 19^{3} + \left(5 a + 17\right)\cdot 19^{4} + \left(2 a + 1\right)\cdot 19^{5} +O(19^{6})\) Copy content Toggle raw display
$r_{ 6 }$ $=$ \( 4 a + 9 + \left(4 a + 13\right)\cdot 19 + \left(14 a + 18\right)\cdot 19^{2} + \left(15 a + 10\right)\cdot 19^{3} + \left(16 a + 3\right)\cdot 19^{4} + \left(2 a + 14\right)\cdot 19^{5} +O(19^{6})\) Copy content Toggle raw display

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,3,5)$
$(1,4,3,6,5,2)$
$(2,4,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$ $c2$
$1$ $1$ $()$ $2$ $2$
$3$ $2$ $(1,6)(2,3)(4,5)$ $0$ $0$
$1$ $3$ $(1,3,5)(2,4,6)$ $2 \zeta_{3}$ $-2 \zeta_{3} - 2$
$1$ $3$ $(1,5,3)(2,6,4)$ $-2 \zeta_{3} - 2$ $2 \zeta_{3}$
$2$ $3$ $(1,3,5)$ $\zeta_{3} + 1$ $-\zeta_{3}$
$2$ $3$ $(1,5,3)$ $-\zeta_{3}$ $\zeta_{3} + 1$
$2$ $3$ $(1,5,3)(2,4,6)$ $-1$ $-1$
$3$ $6$ $(1,4,3,6,5,2)$ $0$ $0$
$3$ $6$ $(1,2,5,6,3,4)$ $0$ $0$
The blue line marks the conjugacy class containing complex conjugation.