Basic invariants
Dimension: | $2$ |
Group: | $D_{6}$ |
Conductor: | \(3240\)\(\medspace = 2^{3} \cdot 3^{4} \cdot 5 \) |
Frobenius-Schur indicator: | $1$ |
Root number: | $1$ |
Artin number field: | Galois closure of 6.2.52488000.1 |
Galois orbit size: | $1$ |
Smallest permutation container: | $D_{6}$ |
Parity: | odd |
Projective image: | $S_3$ |
Projective field: | Galois closure of 3.1.3240.1 |
Galois action
Roots of defining polynomial
The roots of $f$ are computed in an extension of $\Q_{ 29 }$ to precision 6.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 29 }$:
\( x^{2} + 24x + 2 \)
Roots:
$r_{ 1 }$ | $=$ | \( 5 a + 18 + \left(4 a + 21\right)\cdot 29 + \left(8 a + 10\right)\cdot 29^{2} + \left(4 a + 23\right)\cdot 29^{3} + \left(3 a + 17\right)\cdot 29^{4} + \left(17 a + 27\right)\cdot 29^{5} +O(29^{6})\) |
$r_{ 2 }$ | $=$ | \( 24 a + 14 + \left(24 a + 8\right)\cdot 29 + \left(20 a + 18\right)\cdot 29^{2} + \left(24 a + 7\right)\cdot 29^{3} + 25 a\cdot 29^{4} + \left(11 a + 23\right)\cdot 29^{5} +O(29^{6})\) |
$r_{ 3 }$ | $=$ | \( 3 + 29 + 2\cdot 29^{3} + 18\cdot 29^{4} + 21\cdot 29^{5} +O(29^{6})\) |
$r_{ 4 }$ | $=$ | \( 24 a + 11 + \left(24 a + 7\right)\cdot 29 + \left(20 a + 18\right)\cdot 29^{2} + \left(24 a + 5\right)\cdot 29^{3} + \left(25 a + 11\right)\cdot 29^{4} + \left(11 a + 1\right)\cdot 29^{5} +O(29^{6})\) |
$r_{ 5 }$ | $=$ | \( 5 a + 15 + \left(4 a + 20\right)\cdot 29 + \left(8 a + 10\right)\cdot 29^{2} + \left(4 a + 21\right)\cdot 29^{3} + \left(3 a + 28\right)\cdot 29^{4} + \left(17 a + 5\right)\cdot 29^{5} +O(29^{6})\) |
$r_{ 6 }$ | $=$ | \( 26 + 27\cdot 29 + 28\cdot 29^{2} + 26\cdot 29^{3} + 10\cdot 29^{4} + 7\cdot 29^{5} +O(29^{6})\) |
Generators of the action on the roots $r_1, \ldots, r_{ 6 }$
Cycle notation |
Character values on conjugacy classes
Size | Order | Action on $r_1, \ldots, r_{ 6 }$ | Character values |
$c1$ | |||
$1$ | $1$ | $()$ | $2$ |
$1$ | $2$ | $(1,4)(2,5)(3,6)$ | $-2$ |
$3$ | $2$ | $(1,3)(2,5)(4,6)$ | $0$ |
$3$ | $2$ | $(2,6)(3,5)$ | $0$ |
$2$ | $3$ | $(1,2,6)(3,4,5)$ | $-1$ |
$2$ | $6$ | $(1,3,2,4,6,5)$ | $1$ |