Properties

Label 2.3240.6t3.a
Dimension $2$
Group $D_{6}$
Conductor $3240$
Indicator $1$

Related objects

Downloads

Learn more

Basic invariants

Dimension:$2$
Group:$D_{6}$
Conductor:\(3240\)\(\medspace = 2^{3} \cdot 3^{4} \cdot 5 \)
Frobenius-Schur indicator: $1$
Root number: $1$
Artin number field: Galois closure of 6.2.52488000.1
Galois orbit size: $1$
Smallest permutation container: $D_{6}$
Parity: odd
Projective image: $S_3$
Projective field: Galois closure of 3.1.3240.1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 29 }$ to precision 6.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 29 }$: \( x^{2} + 24x + 2 \) Copy content Toggle raw display
Roots:
$r_{ 1 }$ $=$ \( 5 a + 18 + \left(4 a + 21\right)\cdot 29 + \left(8 a + 10\right)\cdot 29^{2} + \left(4 a + 23\right)\cdot 29^{3} + \left(3 a + 17\right)\cdot 29^{4} + \left(17 a + 27\right)\cdot 29^{5} +O(29^{6})\) Copy content Toggle raw display
$r_{ 2 }$ $=$ \( 24 a + 14 + \left(24 a + 8\right)\cdot 29 + \left(20 a + 18\right)\cdot 29^{2} + \left(24 a + 7\right)\cdot 29^{3} + 25 a\cdot 29^{4} + \left(11 a + 23\right)\cdot 29^{5} +O(29^{6})\) Copy content Toggle raw display
$r_{ 3 }$ $=$ \( 3 + 29 + 2\cdot 29^{3} + 18\cdot 29^{4} + 21\cdot 29^{5} +O(29^{6})\) Copy content Toggle raw display
$r_{ 4 }$ $=$ \( 24 a + 11 + \left(24 a + 7\right)\cdot 29 + \left(20 a + 18\right)\cdot 29^{2} + \left(24 a + 5\right)\cdot 29^{3} + \left(25 a + 11\right)\cdot 29^{4} + \left(11 a + 1\right)\cdot 29^{5} +O(29^{6})\) Copy content Toggle raw display
$r_{ 5 }$ $=$ \( 5 a + 15 + \left(4 a + 20\right)\cdot 29 + \left(8 a + 10\right)\cdot 29^{2} + \left(4 a + 21\right)\cdot 29^{3} + \left(3 a + 28\right)\cdot 29^{4} + \left(17 a + 5\right)\cdot 29^{5} +O(29^{6})\) Copy content Toggle raw display
$r_{ 6 }$ $=$ \( 26 + 27\cdot 29 + 28\cdot 29^{2} + 26\cdot 29^{3} + 10\cdot 29^{4} + 7\cdot 29^{5} +O(29^{6})\) Copy content Toggle raw display

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,2,6)(3,4,5)$
$(1,3)(2,5)(4,6)$
$(2,6)(3,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$
$1$ $1$ $()$ $2$
$1$ $2$ $(1,4)(2,5)(3,6)$ $-2$
$3$ $2$ $(1,3)(2,5)(4,6)$ $0$
$3$ $2$ $(2,6)(3,5)$ $0$
$2$ $3$ $(1,2,6)(3,4,5)$ $-1$
$2$ $6$ $(1,3,2,4,6,5)$ $1$
The blue line marks the conjugacy class containing complex conjugation.