Properties

Label 2.2e3_3e3_5e2.6t3.3c1
Dimension 2
Group $D_{6}$
Conductor $ 2^{3} \cdot 3^{3} \cdot 5^{2}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_{6}$
Conductor:$5400= 2^{3} \cdot 3^{3} \cdot 5^{2} $
Artin number field: Splitting field of $f= x^{6} - 3 x^{5} - 3 x^{4} + 9 x^{3} + 42 x^{2} - 126 x + 96 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{6}$
Parity: Odd
Determinant: 1.2e3_3.2t1.2c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 19 }$ to precision 7.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 19 }$: $ x^{2} + 18 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 16 + 14\cdot 19 + 15\cdot 19^{2} + 15\cdot 19^{3} + 4\cdot 19^{4} + 17\cdot 19^{5} + 10\cdot 19^{6} +O\left(19^{ 7 }\right)$
$r_{ 2 }$ $=$ $ 3 a + 6 + 4 a\cdot 19 + \left(2 a + 1\right)\cdot 19^{2} + \left(4 a + 11\right)\cdot 19^{3} + \left(13 a + 2\right)\cdot 19^{4} + \left(10 a + 5\right)\cdot 19^{5} + 6\cdot 19^{6} +O\left(19^{ 7 }\right)$
$r_{ 3 }$ $=$ $ 16 a + 9 + \left(14 a + 1\right)\cdot 19 + \left(16 a + 18\right)\cdot 19^{2} + \left(14 a + 12\right)\cdot 19^{3} + \left(5 a + 11\right)\cdot 19^{4} + \left(8 a + 2\right)\cdot 19^{5} + \left(18 a + 15\right)\cdot 19^{6} +O\left(19^{ 7 }\right)$
$r_{ 4 }$ $=$ $ 6 a + 15 + 17\cdot 19 + \left(9 a + 12\right)\cdot 19^{2} + \left(9 a + 18\right)\cdot 19^{3} + \left(12 a + 16\right)\cdot 19^{4} + \left(10 a + 6\right)\cdot 19^{5} + \left(17 a + 11\right)\cdot 19^{6} +O\left(19^{ 7 }\right)$
$r_{ 5 }$ $=$ $ 13 a + 2 + \left(18 a + 12\right)\cdot 19 + \left(9 a + 2\right)\cdot 19^{2} + 9 a\cdot 19^{3} + \left(6 a + 1\right)\cdot 19^{4} + \left(8 a + 5\right)\cdot 19^{5} + \left(a + 18\right)\cdot 19^{6} +O\left(19^{ 7 }\right)$
$r_{ 6 }$ $=$ $ 12 + 10\cdot 19 + 6\cdot 19^{2} + 17\cdot 19^{3} + 19^{5} + 14\cdot 19^{6} +O\left(19^{ 7 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(2,3)(4,5)$
$(1,2)(4,6)$
$(1,4)(2,6)(3,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,6)(2,4)(3,5)$$-2$
$3$$2$$(1,2)(4,6)$$0$
$3$$2$$(1,4)(2,6)(3,5)$$0$
$2$$3$$(1,3,2)(4,6,5)$$-1$
$2$$6$$(1,5,2,6,3,4)$$1$
The blue line marks the conjugacy class containing complex conjugation.