Properties

Label 2.2e3_3e3_5e2.24t22.3
Dimension 2
Group $\textrm{GL(2,3)}$
Conductor $ 2^{3} \cdot 3^{3} \cdot 5^{2}$
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$\textrm{GL(2,3)}$
Conductor:$5400= 2^{3} \cdot 3^{3} \cdot 5^{2} $
Artin number field: Splitting field of $f= x^{8} - 2 x^{7} + 6 x^{6} - 6 x^{5} - 6 x^{4} + 12 x^{3} - 6 x^{2} - 24 x - 9 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: 24T22
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 17 }$ to precision 8.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 17 }$: $ x^{2} + 16 x + 3 $
Roots:
$r_{ 1 }$ $=$ $ 1 + 7\cdot 17 + 3\cdot 17^{2} + 10\cdot 17^{3} + 17^{4} + 13\cdot 17^{5} + 7\cdot 17^{6} + 4\cdot 17^{7} +O\left(17^{ 8 }\right)$
$r_{ 2 }$ $=$ $ 12 a + 6 + 5\cdot 17 + \left(14 a + 12\right)\cdot 17^{2} + \left(9 a + 7\right)\cdot 17^{3} + \left(14 a + 15\right)\cdot 17^{4} + \left(10 a + 11\right)\cdot 17^{5} + \left(16 a + 11\right)\cdot 17^{6} + \left(12 a + 2\right)\cdot 17^{7} +O\left(17^{ 8 }\right)$
$r_{ 3 }$ $=$ $ 5 a + 1 + \left(16 a + 11\right)\cdot 17 + \left(2 a + 8\right)\cdot 17^{2} + \left(7 a + 3\right)\cdot 17^{3} + \left(2 a + 3\right)\cdot 17^{4} + \left(6 a + 8\right)\cdot 17^{5} + \left(4 a + 16\right)\cdot 17^{7} +O\left(17^{ 8 }\right)$
$r_{ 4 }$ $=$ $ 6 a + 10 + \left(16 a + 5\right)\cdot 17 + \left(2 a + 11\right)\cdot 17^{2} + \left(6 a + 4\right)\cdot 17^{3} + \left(2 a + 5\right)\cdot 17^{4} + \left(6 a + 13\right)\cdot 17^{5} + \left(16 a + 16\right)\cdot 17^{6} + \left(7 a + 14\right)\cdot 17^{7} +O\left(17^{ 8 }\right)$
$r_{ 5 }$ $=$ $ 8 a + 11 + 6 a\cdot 17 + \left(7 a + 11\right)\cdot 17^{2} + \left(a + 12\right)\cdot 17^{3} + \left(8 a + 12\right)\cdot 17^{4} + \left(12 a + 13\right)\cdot 17^{5} + \left(14 a + 5\right)\cdot 17^{6} + \left(13 a + 14\right)\cdot 17^{7} +O\left(17^{ 8 }\right)$
$r_{ 6 }$ $=$ $ 9 a + 2 + \left(10 a + 16\right)\cdot 17 + \left(9 a + 11\right)\cdot 17^{2} + \left(15 a + 6\right)\cdot 17^{3} + \left(8 a + 2\right)\cdot 17^{4} + \left(4 a + 1\right)\cdot 17^{5} + \left(2 a + 8\right)\cdot 17^{6} + \left(3 a + 13\right)\cdot 17^{7} +O\left(17^{ 8 }\right)$
$r_{ 7 }$ $=$ $ 6 + 6\cdot 17 + 11\cdot 17^{2} + 14\cdot 17^{3} + 8\cdot 17^{4} + 6\cdot 17^{5} + 7\cdot 17^{6} + 12\cdot 17^{7} +O\left(17^{ 8 }\right)$
$r_{ 8 }$ $=$ $ 11 a + 16 + 15\cdot 17 + \left(14 a + 14\right)\cdot 17^{2} + \left(10 a + 7\right)\cdot 17^{3} + \left(14 a + 1\right)\cdot 17^{4} + 10 a\cdot 17^{5} + 10\cdot 17^{6} + \left(9 a + 6\right)\cdot 17^{7} +O\left(17^{ 8 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,8,6)(2,7,4)$
$(1,5,7,3)(2,4,6,8)$
$(1,8,7,4)(2,5,6,3)$
$(1,2)(4,8)(6,7)$
$(1,7)(2,6)(3,5)(4,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$ $c2$
$1$ $1$ $()$ $2$ $2$
$1$ $2$ $(1,7)(2,6)(3,5)(4,8)$ $-2$ $-2$
$12$ $2$ $(1,2)(4,8)(6,7)$ $0$ $0$
$8$ $3$ $(1,5,4)(3,8,7)$ $-1$ $-1$
$6$ $4$ $(1,5,7,3)(2,4,6,8)$ $0$ $0$
$8$ $6$ $(1,7)(2,4,5,6,8,3)$ $1$ $1$
$6$ $8$ $(1,4,2,5,7,8,6,3)$ $-\zeta_{8}^{3} - \zeta_{8}$ $\zeta_{8}^{3} + \zeta_{8}$
$6$ $8$ $(1,8,2,3,7,4,6,5)$ $\zeta_{8}^{3} + \zeta_{8}$ $-\zeta_{8}^{3} - \zeta_{8}$
The blue line marks the conjugacy class containing complex conjugation.