Properties

Label 2.2e3_3e2_7.8t11.2c2
Dimension 2
Group $Q_8:C_2$
Conductor $ 2^{3} \cdot 3^{2} \cdot 7 $
Root number not computed
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$Q_8:C_2$
Conductor:$504= 2^{3} \cdot 3^{2} \cdot 7 $
Artin number field: Splitting field of $f= x^{8} - 4 x^{7} + 2 x^{6} + 2 x^{5} + 10 x^{4} - 8 x^{3} - x^{2} - 2 x + 7 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $Q_8:C_2$
Parity: Odd
Determinant: 1.2e3_7.2t1.2c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 127 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 73 + 4\cdot 127 + 96\cdot 127^{2} + 36\cdot 127^{3} + 121\cdot 127^{4} +O\left(127^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 79 + 89\cdot 127 + 11\cdot 127^{2} + 17\cdot 127^{3} + 50\cdot 127^{4} +O\left(127^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 85 + 116\cdot 127 + 66\cdot 127^{2} + 43\cdot 127^{3} + 66\cdot 127^{4} +O\left(127^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 86 + 7\cdot 127 + 30\cdot 127^{2} + 31\cdot 127^{3} + 40\cdot 127^{4} +O\left(127^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 103 + 33\cdot 127 + 64\cdot 127^{2} + 105\cdot 127^{3} + 96\cdot 127^{4} +O\left(127^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 105 + 88\cdot 127 + 57\cdot 127^{2} + 85\cdot 127^{3} + 70\cdot 127^{4} +O\left(127^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 115 + 122\cdot 127 + 20\cdot 127^{2} + 100\cdot 127^{3} + 66\cdot 127^{4} +O\left(127^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 120 + 43\cdot 127 + 33\cdot 127^{2} + 88\cdot 127^{3} + 122\cdot 127^{4} +O\left(127^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,6)(2,7)$
$(1,4)(2,3)(5,6)(7,8)$
$(1,6)(2,7)(3,8)(4,5)$
$(1,2,6,7)(3,4,8,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,6)(2,7)(3,8)(4,5)$$-2$
$2$$2$$(1,4)(2,3)(5,6)(7,8)$$0$
$2$$2$$(1,3)(2,5)(4,7)(6,8)$$0$
$2$$2$$(1,6)(2,7)$$0$
$1$$4$$(1,7,6,2)(3,4,8,5)$$2 \zeta_{4}$
$1$$4$$(1,2,6,7)(3,5,8,4)$$-2 \zeta_{4}$
$2$$4$$(1,2,6,7)(3,4,8,5)$$0$
$2$$4$$(1,4,6,5)(2,3,7,8)$$0$
$2$$4$$(1,8,6,3)(2,4,7,5)$$0$
The blue line marks the conjugacy class containing complex conjugation.