Properties

Label 2.2e3_3e2_7.8t11.1c2
Dimension 2
Group $Q_8:C_2$
Conductor $ 2^{3} \cdot 3^{2} \cdot 7 $
Root number not computed
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$Q_8:C_2$
Conductor:$504= 2^{3} \cdot 3^{2} \cdot 7 $
Artin number field: Splitting field of $f= x^{8} - x^{7} - x^{6} - 7 x^{5} + 22 x^{4} - 23 x^{3} + 11 x^{2} - 2 x + 1 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $Q_8:C_2$
Parity: Odd
Determinant: 1.2e3_7.2t1.2c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 127 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 12 + 89\cdot 127 + 15\cdot 127^{2} + 10\cdot 127^{3} + 42\cdot 127^{4} +O\left(127^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 30 + 68\cdot 127 + 77\cdot 127^{2} + 105\cdot 127^{3} + 44\cdot 127^{4} +O\left(127^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 38 + 116\cdot 127 + 32\cdot 127^{2} + 93\cdot 127^{3} + 99\cdot 127^{4} +O\left(127^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 65 + 126\cdot 127 + 60\cdot 127^{2} + 25\cdot 127^{3} + 72\cdot 127^{4} +O\left(127^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 67 + 19\cdot 127 + 118\cdot 127^{2} + 54\cdot 127^{3} + 38\cdot 127^{4} +O\left(127^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 79 + 84\cdot 127 + 16\cdot 127^{2} + 81\cdot 127^{3} + 18\cdot 127^{4} +O\left(127^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 99 + 7\cdot 127 + 103\cdot 127^{2} + 93\cdot 127^{3} + 36\cdot 127^{4} +O\left(127^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 119 + 122\cdot 127 + 82\cdot 127^{2} + 43\cdot 127^{3} + 28\cdot 127^{4} +O\left(127^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,7)(2,6)(3,8)(4,5)$
$(1,5)(6,8)$
$(1,6,5,8)(2,4,3,7)$
$(1,5)(2,3)(4,7)(6,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,5)(2,3)(4,7)(6,8)$$-2$
$2$$2$$(1,7)(2,6)(3,8)(4,5)$$0$
$2$$2$$(1,5)(6,8)$$0$
$2$$2$$(1,3)(2,5)(4,8)(6,7)$$0$
$1$$4$$(1,6,5,8)(2,4,3,7)$$2 \zeta_{4}$
$1$$4$$(1,8,5,6)(2,7,3,4)$$-2 \zeta_{4}$
$2$$4$$(1,2,5,3)(4,8,7,6)$$0$
$2$$4$$(1,7,5,4)(2,8,3,6)$$0$
$2$$4$$(1,8,5,6)(2,4,3,7)$$0$
The blue line marks the conjugacy class containing complex conjugation.