Properties

Label 2.2e3_3e2_7.4t3.3
Dimension 2
Group $D_4$
Conductor $ 2^{3} \cdot 3^{2} \cdot 7 $
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_4$
Conductor:$504= 2^{3} \cdot 3^{2} \cdot 7 $
Artin number field: Splitting field of $f= x^{8} - 2 x^{7} + 5 x^{6} - 4 x^{5} + x^{4} - 18 x^{3} + 15 x^{2} + 18 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{4}$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 71 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 2 + 28\cdot 71 + 60\cdot 71^{2} + 46\cdot 71^{3} + 20\cdot 71^{4} +O\left(71^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 5 + 14\cdot 71 + 59\cdot 71^{2} + 2\cdot 71^{3} + 30\cdot 71^{4} +O\left(71^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 9 + 11\cdot 71 + 4\cdot 71^{2} + 20\cdot 71^{3} + 32\cdot 71^{4} +O\left(71^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 10 + 59\cdot 71 + 69\cdot 71^{2} + 61\cdot 71^{3} + 67\cdot 71^{4} +O\left(71^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 22 + 67\cdot 71 + 48\cdot 71^{2} + 18\cdot 71^{3} + 67\cdot 71^{4} +O\left(71^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 27 + 41\cdot 71 + 59\cdot 71^{2} + 6\cdot 71^{3} + 34\cdot 71^{4} +O\left(71^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 31 + 4\cdot 71 + 19\cdot 71^{2} + 41\cdot 71^{3} + 45\cdot 71^{4} +O\left(71^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 38 + 58\cdot 71 + 33\cdot 71^{2} + 14\cdot 71^{3} + 57\cdot 71^{4} +O\left(71^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,2,3,4)(5,8,6,7)$
$(1,5)(2,7)(3,6)(4,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$
$1$ $1$ $()$ $2$
$1$ $2$ $(1,3)(2,4)(5,6)(7,8)$ $-2$
$2$ $2$ $(1,5)(2,7)(3,6)(4,8)$ $0$
$2$ $2$ $(1,7)(2,6)(3,8)(4,5)$ $0$
$2$ $4$ $(1,2,3,4)(5,8,6,7)$ $0$
The blue line marks the conjugacy class containing complex conjugation.