Properties

Label 2.2e3_3e2_7.4t3.2c1
Dimension 2
Group $D_{4}$
Conductor $ 2^{3} \cdot 3^{2} \cdot 7 $
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_{4}$
Conductor:$504= 2^{3} \cdot 3^{2} \cdot 7 $
Artin number field: Splitting field of $f= x^{4} - x^{3} + 5 x^{2} - 5 x + 4 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{4}$
Parity: Odd
Determinant: 1.2e3_7.2t1.2c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 71 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 7 + 21\cdot 71 + 23\cdot 71^{2} + 27\cdot 71^{3} + 27\cdot 71^{4} +O\left(71^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 18 + 6\cdot 71 + 12\cdot 71^{2} + 15\cdot 71^{3} + 65\cdot 71^{4} +O\left(71^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 22 + 9\cdot 71 + 11\cdot 71^{2} + 46\cdot 71^{3} + 12\cdot 71^{4} +O\left(71^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 25 + 34\cdot 71 + 24\cdot 71^{2} + 53\cdot 71^{3} + 36\cdot 71^{4} +O\left(71^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 4 }$

Cycle notation
$(1,4)$
$(1,2)(3,4)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 4 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,4)(2,3)$$-2$
$2$$2$$(1,2)(3,4)$$0$
$2$$2$$(1,4)$$0$
$2$$4$$(1,3,4,2)$$0$
The blue line marks the conjugacy class containing complex conjugation.