Properties

Label 2.2e3_3e2_5e2.6t3.2c1
Dimension 2
Group $D_{6}$
Conductor $ 2^{3} \cdot 3^{2} \cdot 5^{2}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_{6}$
Conductor:$1800= 2^{3} \cdot 3^{2} \cdot 5^{2} $
Artin number field: Splitting field of $f= x^{6} - 2 x^{4} - 10 x^{3} + 28 x^{2} - 20 x + 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{6}$
Parity: Odd
Determinant: 1.2e3.2t1.2c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 23 }$ to precision 7.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 23 }$: $ x^{2} + 21 x + 5 $
Roots:
$r_{ 1 }$ $=$ $ a + \left(18 a + 7\right)\cdot 23 + \left(19 a + 8\right)\cdot 23^{2} + \left(9 a + 11\right)\cdot 23^{3} + \left(a + 2\right)\cdot 23^{4} + 19 a\cdot 23^{5} + \left(2 a + 20\right)\cdot 23^{6} +O\left(23^{ 7 }\right)$
$r_{ 2 }$ $=$ $ 22 a + 2 + \left(4 a + 19\right)\cdot 23 + \left(3 a + 6\right)\cdot 23^{2} + \left(13 a + 11\right)\cdot 23^{3} + \left(21 a + 18\right)\cdot 23^{4} + \left(3 a + 13\right)\cdot 23^{5} + \left(20 a + 6\right)\cdot 23^{6} +O\left(23^{ 7 }\right)$
$r_{ 3 }$ $=$ $ 19 a + 11 + \left(19 a + 16\right)\cdot 23 + \left(20 a + 1\right)\cdot 23^{2} + \left(2 a + 19\right)\cdot 23^{3} + \left(5 a + 13\right)\cdot 23^{4} + \left(a + 15\right)\cdot 23^{5} + 9 a\cdot 23^{6} +O\left(23^{ 7 }\right)$
$r_{ 4 }$ $=$ $ 10 + 14\cdot 23 + 14\cdot 23^{3} + 11\cdot 23^{4} + 9\cdot 23^{5} + 8\cdot 23^{6} +O\left(23^{ 7 }\right)$
$r_{ 5 }$ $=$ $ 20 + 20\cdot 23 + 4\cdot 23^{2} + 9\cdot 23^{3} + 23^{4} + 17\cdot 23^{5} + 15\cdot 23^{6} +O\left(23^{ 7 }\right)$
$r_{ 6 }$ $=$ $ 4 a + 3 + \left(3 a + 14\right)\cdot 23 + 2 a\cdot 23^{2} + \left(20 a + 4\right)\cdot 23^{3} + \left(17 a + 21\right)\cdot 23^{4} + \left(21 a + 12\right)\cdot 23^{5} + \left(13 a + 17\right)\cdot 23^{6} +O\left(23^{ 7 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,2)(3,6)$
$(1,3)(2,6)(4,5)$
$(2,4)(5,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,3)(2,6)(4,5)$$-2$
$3$$2$$(1,2)(3,6)$$0$
$3$$2$$(1,6)(2,3)(4,5)$$0$
$2$$3$$(1,4,2)(3,5,6)$$-1$
$2$$6$$(1,5,2,3,4,6)$$1$
The blue line marks the conjugacy class containing complex conjugation.