Properties

Label 2.2e3_3e2_5e2.24t22.4c1
Dimension 2
Group $\textrm{GL(2,3)}$
Conductor $ 2^{3} \cdot 3^{2} \cdot 5^{2}$
Root number not computed
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$\textrm{GL(2,3)}$
Conductor:$1800= 2^{3} \cdot 3^{2} \cdot 5^{2} $
Artin number field: Splitting field of $f= x^{8} - 2 x^{7} - 2 x^{6} + 16 x^{5} - 20 x^{4} + 16 x^{3} - 2 x^{2} - 2 x + 1 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: 24T22
Parity: Odd
Determinant: 1.3.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 41 }$ to precision 6.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 41 }$: $ x^{2} + 38 x + 6 $
Roots:
$r_{ 1 }$ $=$ $ 38 a + 14 + \left(23 a + 3\right)\cdot 41 + 14 a\cdot 41^{2} + \left(40 a + 35\right)\cdot 41^{3} + \left(13 a + 33\right)\cdot 41^{4} + \left(7 a + 24\right)\cdot 41^{5} +O\left(41^{ 6 }\right)$
$r_{ 2 }$ $=$ $ 27 + 8\cdot 41 + 36\cdot 41^{2} + 21\cdot 41^{3} + 5\cdot 41^{4} + 35\cdot 41^{5} +O\left(41^{ 6 }\right)$
$r_{ 3 }$ $=$ $ 11 a + 4 + \left(15 a + 15\right)\cdot 41 + \left(39 a + 7\right)\cdot 41^{2} + \left(24 a + 33\right)\cdot 41^{3} + \left(36 a + 27\right)\cdot 41^{4} + \left(13 a + 24\right)\cdot 41^{5} +O\left(41^{ 6 }\right)$
$r_{ 4 }$ $=$ $ 4 a + 35 + \left(9 a + 31\right)\cdot 41 + \left(34 a + 38\right)\cdot 41^{2} + \left(20 a + 19\right)\cdot 41^{3} + \left(6 a + 20\right)\cdot 41^{4} + \left(33 a + 10\right)\cdot 41^{5} +O\left(41^{ 6 }\right)$
$r_{ 5 }$ $=$ $ 30 a + 37 + \left(25 a + 8\right)\cdot 41 + \left(a + 28\right)\cdot 41^{2} + \left(16 a + 27\right)\cdot 41^{3} + \left(4 a + 30\right)\cdot 41^{4} + \left(27 a + 29\right)\cdot 41^{5} +O\left(41^{ 6 }\right)$
$r_{ 6 }$ $=$ $ 37 a + 6 + \left(31 a + 14\right)\cdot 41 + \left(6 a + 9\right)\cdot 41^{2} + \left(20 a + 7\right)\cdot 41^{3} + \left(34 a + 19\right)\cdot 41^{4} + \left(7 a + 21\right)\cdot 41^{5} +O\left(41^{ 6 }\right)$
$r_{ 7 }$ $=$ $ 38 + 3\cdot 41 + 24\cdot 41^{2} + 32\cdot 41^{4} + 25\cdot 41^{5} +O\left(41^{ 6 }\right)$
$r_{ 8 }$ $=$ $ 3 a + 5 + \left(17 a + 37\right)\cdot 41 + \left(26 a + 19\right)\cdot 41^{2} + 18\cdot 41^{3} + \left(27 a + 35\right)\cdot 41^{4} + \left(33 a + 32\right)\cdot 41^{5} +O\left(41^{ 6 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,5)(3,6)(4,8)$
$(1,8)(2,7)(3,6)(4,5)$
$(1,4,3)(5,6,8)$
$(1,6,8,3)(2,5,7,4)$
$(1,5,8,4)(2,3,7,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,8)(2,7)(3,6)(4,5)$$-2$
$12$$2$$(1,5)(3,6)(4,8)$$0$
$8$$3$$(1,4,3)(5,6,8)$$-1$
$6$$4$$(1,6,8,3)(2,5,7,4)$$0$
$8$$6$$(1,2,5,8,7,4)(3,6)$$1$
$6$$8$$(1,3,5,7,8,6,4,2)$$-\zeta_{8}^{3} - \zeta_{8}$
$6$$8$$(1,6,5,2,8,3,4,7)$$\zeta_{8}^{3} + \zeta_{8}$
The blue line marks the conjugacy class containing complex conjugation.