Basic invariants
Dimension: | $2$ |
Group: | $\textrm{GL(2,3)}$ |
Conductor: | \(1800\)\(\medspace = 2^{3} \cdot 3^{2} \cdot 5^{2} \) |
Artin stem field: | Galois closure of 8.2.1399680000.1 |
Galois orbit size: | $2$ |
Smallest permutation container: | 24T22 |
Parity: | odd |
Determinant: | 1.3.2t1.a.a |
Projective image: | $S_4$ |
Projective stem field: | Galois closure of 4.2.10800.2 |
Defining polynomial
$f(x)$ | $=$ | \( x^{8} - 6x^{4} - 12x^{2} - 3 \) . |
The roots of $f$ are computed in an extension of $\Q_{ 41 }$ to precision 8.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 41 }$: \( x^{2} + 38x + 6 \)
Roots:
$r_{ 1 }$ | $=$ | \( 15 a + 36 + \left(6 a + 6\right)\cdot 41 + \left(7 a + 12\right)\cdot 41^{2} + \left(15 a + 26\right)\cdot 41^{3} + \left(37 a + 26\right)\cdot 41^{4} + \left(40 a + 12\right)\cdot 41^{5} + \left(10 a + 1\right)\cdot 41^{6} + \left(39 a + 17\right)\cdot 41^{7} +O(41^{8})\) |
$r_{ 2 }$ | $=$ | \( 15 a + 1 + \left(6 a + 30\right)\cdot 41 + \left(7 a + 13\right)\cdot 41^{2} + \left(15 a + 17\right)\cdot 41^{3} + \left(37 a + 40\right)\cdot 41^{4} + \left(40 a + 24\right)\cdot 41^{5} + \left(10 a + 6\right)\cdot 41^{6} + \left(39 a + 40\right)\cdot 41^{7} +O(41^{8})\) |
$r_{ 3 }$ | $=$ | \( 24 a + 5 + \left(14 a + 31\right)\cdot 41 + \left(36 a + 34\right)\cdot 41^{2} + \left(35 a + 25\right)\cdot 41^{3} + \left(7 a + 26\right)\cdot 41^{4} + \left(28 a + 2\right)\cdot 41^{5} + \left(25 a + 37\right)\cdot 41^{6} + \left(2 a + 8\right)\cdot 41^{7} +O(41^{8})\) |
$r_{ 4 }$ | $=$ | \( 18 + 7\cdot 41 + 31\cdot 41^{2} + 19\cdot 41^{3} + 25\cdot 41^{4} + 18\cdot 41^{5} + 7\cdot 41^{6} + 12\cdot 41^{7} +O(41^{8})\) |
$r_{ 5 }$ | $=$ | \( 26 a + 5 + \left(34 a + 34\right)\cdot 41 + \left(33 a + 28\right)\cdot 41^{2} + \left(25 a + 14\right)\cdot 41^{3} + \left(3 a + 14\right)\cdot 41^{4} + 28\cdot 41^{5} + \left(30 a + 39\right)\cdot 41^{6} + \left(a + 23\right)\cdot 41^{7} +O(41^{8})\) |
$r_{ 6 }$ | $=$ | \( 26 a + 40 + \left(34 a + 10\right)\cdot 41 + \left(33 a + 27\right)\cdot 41^{2} + \left(25 a + 23\right)\cdot 41^{3} + 3 a\cdot 41^{4} + 16\cdot 41^{5} + \left(30 a + 34\right)\cdot 41^{6} + a\cdot 41^{7} +O(41^{8})\) |
$r_{ 7 }$ | $=$ | \( 17 a + 36 + \left(26 a + 9\right)\cdot 41 + \left(4 a + 6\right)\cdot 41^{2} + \left(5 a + 15\right)\cdot 41^{3} + \left(33 a + 14\right)\cdot 41^{4} + \left(12 a + 38\right)\cdot 41^{5} + \left(15 a + 3\right)\cdot 41^{6} + \left(38 a + 32\right)\cdot 41^{7} +O(41^{8})\) |
$r_{ 8 }$ | $=$ | \( 23 + 33\cdot 41 + 9\cdot 41^{2} + 21\cdot 41^{3} + 15\cdot 41^{4} + 22\cdot 41^{5} + 33\cdot 41^{6} + 28\cdot 41^{7} +O(41^{8})\) |
Generators of the action on the roots $r_1, \ldots, r_{ 8 }$
Cycle notation |
Character values on conjugacy classes
Size | Order | Action on $r_1, \ldots, r_{ 8 }$ | Character value |
$1$ | $1$ | $()$ | $2$ |
$1$ | $2$ | $(1,5)(2,6)(3,7)(4,8)$ | $-2$ |
$12$ | $2$ | $(1,5)(2,8)(4,6)$ | $0$ |
$8$ | $3$ | $(1,4,7)(3,5,8)$ | $-1$ |
$6$ | $4$ | $(1,3,5,7)(2,8,6,4)$ | $0$ |
$8$ | $6$ | $(1,3,4,5,7,8)(2,6)$ | $1$ |
$6$ | $8$ | $(1,4,3,2,5,8,7,6)$ | $-\zeta_{8}^{3} - \zeta_{8}$ |
$6$ | $8$ | $(1,8,3,6,5,4,7,2)$ | $\zeta_{8}^{3} + \zeta_{8}$ |
The blue line marks the conjugacy class containing complex conjugation.