Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in $\Q_{ 47 }$ to precision 5.
Roots:
| $r_{ 1 }$ |
$=$ |
$ 8 + 9\cdot 47 + 41\cdot 47^{2} + 3\cdot 47^{3} + 11\cdot 47^{4} +O\left(47^{ 5 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 13 + 25\cdot 47 + 3\cdot 47^{2} + 8\cdot 47^{3} + 2\cdot 47^{4} +O\left(47^{ 5 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 16 + 26\cdot 47 + 11\cdot 47^{2} + 43\cdot 47^{3} + 15\cdot 47^{4} +O\left(47^{ 5 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 20 + 42\cdot 47^{2} + 18\cdot 47^{3} + 21\cdot 47^{4} +O\left(47^{ 5 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 27 + 46\cdot 47 + 4\cdot 47^{2} + 28\cdot 47^{3} + 25\cdot 47^{4} +O\left(47^{ 5 }\right)$ |
| $r_{ 6 }$ |
$=$ |
$ 31 + 20\cdot 47 + 35\cdot 47^{2} + 3\cdot 47^{3} + 31\cdot 47^{4} +O\left(47^{ 5 }\right)$ |
| $r_{ 7 }$ |
$=$ |
$ 34 + 21\cdot 47 + 43\cdot 47^{2} + 38\cdot 47^{3} + 44\cdot 47^{4} +O\left(47^{ 5 }\right)$ |
| $r_{ 8 }$ |
$=$ |
$ 39 + 37\cdot 47 + 5\cdot 47^{2} + 43\cdot 47^{3} + 35\cdot 47^{4} +O\left(47^{ 5 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 8 }$
| Cycle notation |
| $(1,5,2,6)(3,8,4,7)$ |
| $(1,2)(3,4)(5,6)(7,8)$ |
| $(1,3)(2,4)(5,7)(6,8)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 8 }$
| Character value |
| $1$ | $1$ | $()$ | $2$ |
| $1$ | $2$ | $(1,2)(3,4)(5,6)(7,8)$ | $-2$ |
| $2$ | $2$ | $(1,3)(2,4)(5,7)(6,8)$ | $0$ |
| $2$ | $2$ | $(1,8)(2,7)(3,5)(4,6)$ | $0$ |
| $2$ | $4$ | $(1,5,2,6)(3,8,4,7)$ | $0$ |
The blue line marks the conjugacy class containing complex conjugation.