Properties

Label 2.2e3_3e2_5.4t3.6
Dimension 2
Group $D_4$
Conductor $ 2^{3} \cdot 3^{2} \cdot 5 $
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_4$
Conductor:$360= 2^{3} \cdot 3^{2} \cdot 5 $
Artin number field: Splitting field of $f= x^{8} + 4 x^{6} - 3 x^{4} - 14 x^{2} + 16 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{4}$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 47 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 8 + 9\cdot 47 + 41\cdot 47^{2} + 3\cdot 47^{3} + 11\cdot 47^{4} +O\left(47^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 13 + 25\cdot 47 + 3\cdot 47^{2} + 8\cdot 47^{3} + 2\cdot 47^{4} +O\left(47^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 16 + 26\cdot 47 + 11\cdot 47^{2} + 43\cdot 47^{3} + 15\cdot 47^{4} +O\left(47^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 20 + 42\cdot 47^{2} + 18\cdot 47^{3} + 21\cdot 47^{4} +O\left(47^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 27 + 46\cdot 47 + 4\cdot 47^{2} + 28\cdot 47^{3} + 25\cdot 47^{4} +O\left(47^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 31 + 20\cdot 47 + 35\cdot 47^{2} + 3\cdot 47^{3} + 31\cdot 47^{4} +O\left(47^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 34 + 21\cdot 47 + 43\cdot 47^{2} + 38\cdot 47^{3} + 44\cdot 47^{4} +O\left(47^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 39 + 37\cdot 47 + 5\cdot 47^{2} + 43\cdot 47^{3} + 35\cdot 47^{4} +O\left(47^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,5,2,6)(3,8,4,7)$
$(1,2)(3,4)(5,6)(7,8)$
$(1,3)(2,4)(5,7)(6,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$
$1$ $1$ $()$ $2$
$1$ $2$ $(1,2)(3,4)(5,6)(7,8)$ $-2$
$2$ $2$ $(1,3)(2,4)(5,7)(6,8)$ $0$
$2$ $2$ $(1,8)(2,7)(3,5)(4,6)$ $0$
$2$ $4$ $(1,5,2,6)(3,8,4,7)$ $0$
The blue line marks the conjugacy class containing complex conjugation.