Properties

Label 2.2e3_3e2_5.4t3.1
Dimension 2
Group $D_{4}$
Conductor $ 2^{3} \cdot 3^{2} \cdot 5 $
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_{4}$
Conductor:$360= 2^{3} \cdot 3^{2} \cdot 5 $
Artin number field: Splitting field of $f= x^{4} - 2 x^{3} - 3 x^{2} + 4 x - 2 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{4}$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 47 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 4 + 2\cdot 47 + 24\cdot 47^{3} + 40\cdot 47^{4} +O\left(47^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 22 + 6\cdot 47 + 35\cdot 47^{2} + 26\cdot 47^{3} + 41\cdot 47^{4} +O\left(47^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 26 + 40\cdot 47 + 11\cdot 47^{2} + 20\cdot 47^{3} + 5\cdot 47^{4} +O\left(47^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 44 + 44\cdot 47 + 46\cdot 47^{2} + 22\cdot 47^{3} + 6\cdot 47^{4} +O\left(47^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 4 }$

Cycle notation
$(1,4)$
$(1,2)(3,4)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 4 }$ Character values
$c1$
$1$ $1$ $()$ $2$
$1$ $2$ $(1,4)(2,3)$ $-2$
$2$ $2$ $(1,2)(3,4)$ $0$
$2$ $2$ $(1,4)$ $0$
$2$ $4$ $(1,3,4,2)$ $0$
The blue line marks the conjugacy class containing complex conjugation.