Properties

Label 2.2e3_3e2_41.4t3.6
Dimension 2
Group $D_4$
Conductor $ 2^{3} \cdot 3^{2} \cdot 41 $
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_4$
Conductor:$2952= 2^{3} \cdot 3^{2} \cdot 41 $
Artin number field: Splitting field of $f= x^{8} - 2 x^{7} + 3 x^{6} + 28 x^{5} + 89 x^{4} + 158 x^{3} + 1573 x^{2} + 48 x + 3358 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{4}$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 73 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 69\cdot 73 + 7\cdot 73^{2} + 59\cdot 73^{3} + 16\cdot 73^{4} +O\left(73^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 1 + 39\cdot 73 + 4\cdot 73^{2} + 53\cdot 73^{3} + 23\cdot 73^{4} +O\left(73^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 4 + 70\cdot 73 + 57\cdot 73^{2} + 2\cdot 73^{3} + 52\cdot 73^{4} +O\left(73^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 9 + 3\cdot 73^{2} + 41\cdot 73^{3} + 31\cdot 73^{4} +O\left(73^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 10 + 43\cdot 73 + 72\cdot 73^{2} + 34\cdot 73^{3} + 38\cdot 73^{4} +O\left(73^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 13 + 73 + 53\cdot 73^{2} + 57\cdot 73^{3} + 66\cdot 73^{4} +O\left(73^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 51 + 32\cdot 73 + 12\cdot 73^{2} + 67\cdot 73^{3} + 23\cdot 73^{4} +O\left(73^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 60 + 36\cdot 73 + 7\cdot 73^{2} + 49\cdot 73^{3} + 38\cdot 73^{4} +O\left(73^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,4)(2,8)(3,6)(5,7)$
$(1,2)(3,7)(4,5)(6,8)$
$(1,3)(2,7)(4,6)(5,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$
$1$ $1$ $()$ $2$
$1$ $2$ $(1,3)(2,7)(4,6)(5,8)$ $-2$
$2$ $2$ $(1,2)(3,7)(4,5)(6,8)$ $0$
$2$ $2$ $(1,4)(2,8)(3,6)(5,7)$ $0$
$2$ $4$ $(1,8,3,5)(2,4,7,6)$ $0$
The blue line marks the conjugacy class containing complex conjugation.