Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in $\Q_{ 41 }$ to precision 5.
Roots:
| $r_{ 1 }$ |
$=$ |
$ 32\cdot 41 + 28\cdot 41^{2} + 36\cdot 41^{4} +O\left(41^{ 5 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 4 + 33\cdot 41 + 28\cdot 41^{2} + 33\cdot 41^{3} + 9\cdot 41^{4} +O\left(41^{ 5 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 7 + 29\cdot 41 + 4\cdot 41^{2} + 2\cdot 41^{3} + 13\cdot 41^{4} +O\left(41^{ 5 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 9 + 29\cdot 41 + 17\cdot 41^{2} + 26\cdot 41^{3} + 28\cdot 41^{4} +O\left(41^{ 5 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 16 + 26\cdot 41 + 34\cdot 41^{2} + 27\cdot 41^{3} + 5\cdot 41^{4} +O\left(41^{ 5 }\right)$ |
| $r_{ 6 }$ |
$=$ |
$ 22 + 31\cdot 41 + 30\cdot 41^{2} + 19\cdot 41^{3} + 30\cdot 41^{4} +O\left(41^{ 5 }\right)$ |
| $r_{ 7 }$ |
$=$ |
$ 29 + 28\cdot 41 + 6\cdot 41^{2} + 21\cdot 41^{3} + 7\cdot 41^{4} +O\left(41^{ 5 }\right)$ |
| $r_{ 8 }$ |
$=$ |
$ 38 + 35\cdot 41 + 11\cdot 41^{2} + 32\cdot 41^{3} + 32\cdot 41^{4} +O\left(41^{ 5 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 8 }$
| Cycle notation |
| $(1,2,4,7)(3,8,5,6)$ |
| $(1,3)(2,6)(4,5)(7,8)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 8 }$
| Character values |
| | |
$c1$ |
| $1$ |
$1$ |
$()$ |
$2$ |
| $1$ |
$2$ |
$(1,4)(2,7)(3,5)(6,8)$ |
$-2$ |
| $2$ |
$2$ |
$(1,3)(2,6)(4,5)(7,8)$ |
$0$ |
| $2$ |
$2$ |
$(1,6)(2,5)(3,7)(4,8)$ |
$0$ |
| $2$ |
$4$ |
$(1,2,4,7)(3,8,5,6)$ |
$0$ |
The blue line marks the conjugacy class containing complex conjugation.