Properties

Label 2.2e3_3e2_17e2.8t8.1c1
Dimension 2
Group $QD_{16}$
Conductor $ 2^{3} \cdot 3^{2} \cdot 17^{2}$
Root number not computed
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$QD_{16}$
Conductor:$20808= 2^{3} \cdot 3^{2} \cdot 17^{2} $
Artin number field: Splitting field of $f= x^{8} - x^{7} + 8 x^{6} - 52 x^{5} - 44 x^{4} - 284 x^{3} - 208 x^{2} - 368 x + 64 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $QD_{16}$
Parity: Odd
Determinant: 1.2e3.2t1.2c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 43 }$ to precision 6.
Roots:
$r_{ 1 }$ $=$ $ 2 + 15\cdot 43 + 9\cdot 43^{2} + 23\cdot 43^{3} + 8\cdot 43^{4} + 29\cdot 43^{5} +O\left(43^{ 6 }\right)$
$r_{ 2 }$ $=$ $ 4 + 3\cdot 43 + 3\cdot 43^{2} + 40\cdot 43^{3} + 7\cdot 43^{5} +O\left(43^{ 6 }\right)$
$r_{ 3 }$ $=$ $ 5 + 15\cdot 43 + 13\cdot 43^{2} + 27\cdot 43^{4} + 26\cdot 43^{5} +O\left(43^{ 6 }\right)$
$r_{ 4 }$ $=$ $ 8 + 42\cdot 43 + 31\cdot 43^{2} + 2\cdot 43^{3} + 5\cdot 43^{4} + 43^{5} +O\left(43^{ 6 }\right)$
$r_{ 5 }$ $=$ $ 14 + 32\cdot 43 + 35\cdot 43^{2} + 20\cdot 43^{3} + 35\cdot 43^{4} + 32\cdot 43^{5} +O\left(43^{ 6 }\right)$
$r_{ 6 }$ $=$ $ 25 + 30\cdot 43 + 35\cdot 43^{2} + 11\cdot 43^{3} + 31\cdot 43^{4} + 26\cdot 43^{5} +O\left(43^{ 6 }\right)$
$r_{ 7 }$ $=$ $ 32 + 41\cdot 43 + 5\cdot 43^{2} + 33\cdot 43^{3} + 32\cdot 43^{4} + 32\cdot 43^{5} +O\left(43^{ 6 }\right)$
$r_{ 8 }$ $=$ $ 40 + 34\cdot 43 + 36\cdot 43^{2} + 39\cdot 43^{3} + 30\cdot 43^{4} + 15\cdot 43^{5} +O\left(43^{ 6 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,7)(3,5)(4,8)$
$(1,7,3,5)(2,8,6,4)$
$(1,3)(2,6)(4,8)(5,7)$
$(1,4,3,8)(2,7,6,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,3)(2,6)(4,8)(5,7)$$-2$
$4$$2$$(1,7)(3,5)(4,8)$$0$
$2$$4$$(1,7,3,5)(2,8,6,4)$$0$
$4$$4$$(1,4,3,8)(2,7,6,5)$$0$
$2$$8$$(1,8,7,6,3,4,5,2)$$-\zeta_{8}^{3} - \zeta_{8}$
$2$$8$$(1,4,7,2,3,8,5,6)$$\zeta_{8}^{3} + \zeta_{8}$
The blue line marks the conjugacy class containing complex conjugation.